New old process boosts solar, fuel cells

Chemical reactions on the surface of metal oxides, such as titanium dioxide and zinc oxide could give a boost for solar cells that convert the sun's energy to electricity.

06/26/2012


ISS SourceChemical reactions on the surface of metal oxides, such as titanium dioxide and zinc oxide could give a boost for solar cells that convert the sun’s energy to electricity.

A previously unappreciated aspect of those reactions could be key in developing more efficient energy systems, said scientists at the University of Washington (UW).

"These refined systems could include solar cells that would produce more electricity from the sun’s rays, or hydrogen fuel cells efficient enough for use in automobiles," said James Mayer, a UW chemistry professor.

“As we think about building a better energy future, we have to develop more efficient ways to convert chemical energy into electrical energy and vice versa,” said Mayer, the corresponding author of a paper about the discovery.

Chemical reactions that change the oxidation state of molecules on the surface of metal oxides historically have been a sole transfer of electrons. New research shows, at least in some reactions, the transfer process includes coupled electrons and protons.

“Research and manufacturing have grown up around models in which electrons moved but not atoms,” Mayer said.  “The research looks at a different model for certain kinds of processes, a perspective that could lead to new avenues of investigation. In principle this is a path toward more efficient energy utilization.”

Coupling the transfer of electrons with the transfer of protons could reduce the energy barriers to chemical reactions important in many technologies. For example, using solar energy to make fuels such as hydrogen requires that electrons and protons couple.

The new perspective also could be important for photocatalytic chemical processes, including those designed for wastewater remediation or to create self-cleaning surfaces, such as the outside of buildings in areas with heavy industrial air pollution.

The research focused specifically on nanoparticles, measured in billionths of a meter, of titanium dioxide and zinc oxide. Titanium dioxide is the most common white pigment, used in paints, coatings, plastics, sunscreen and other materials. Zinc oxide also is in pigments, coatings and sunscreens, as well as white athletic tape, and is also in the rubber, concrete and other materials. Nanocrystals closely examine chemical processes at the material’s surface.

Mayer said the goal of the work is to get those working in various technological areas involving metal oxides to think in different ways about how those technologies work and how to make them more efficient.

The work also could prove important in finding more efficient ways to fuel vehicles of the future, he said. Fuel cells transform atmospheric oxygen into water by adding electrons and protons. Coupling those added electrons and protons could make fuel cells more efficient and allow replacement of costly materials such as platinum.

“Chemical fuels are very useful, and they’re not going away,” Mayer said. “But how do we utilize them better in a non-fossil-fuel world?”



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.