Offshore energy development lab

There is now a research facility that could help bring the U.S. closer to generating power from the winds and waters along America’s coasts and help alleviate a major hurdle for offshore wind and ocean power development.

02/08/2013


ISS SourceThere is now a research facility that could help bring the U.S. closer to generating power from the winds and waters along America’s coasts and help alleviate a major hurdle for offshore wind and ocean power development.

The Reference Facility for Offshore Renewable Energy can test technologies such as remote sensing designed to determine the power-generating potential of offshore winds and waters, according to Will Shaw, an atmospheric scientist at the U.S. Dept. of Energy’s (DoE) Pacific Northwest National Laboratory (PNNL).

Research at the facility will help verify the technologies can collect reliable data and help improve those technologies. This knowledge provides potential investors confidence when reviewing offshore development proposals. Questions about the accuracy of offshore data from new measurement technologies have made some investors hesitant to back offshore energy projects.

Current plans are for the facility to be at the Chesapeake Light Tower, a former Coast Guard lighthouse 13 miles off the coast of Virginia Beach, Va. Scientists representing industry, government and academia are likely to start research at the facility in 2015. PNNL will shape and prioritize the research conducted there, while National Renewable Energy Laboratory (NREL) will manage the facility’s remodeling and operations.

PNNL will form an interagency steering committee to determine the facility’s research priorities and procedures. Research will primarily focus on offshore wind, but will also include underwater ocean energy and environmental monitoring technologies.

Part of NREL’s renovation of the former lighthouse will include installing research equipment. Such equipment includes a meteorological tower that reaches 100 meters above sea level, which is the height of offshore wind turbine hubs.

The harsh environment and remote locale of offshore energy sites makes new technologies necessary to assess the power-producing potential of offshore sites.

Strong winds and high concentrations of salt, for example, mean data-collecting equipment needs to be heavy duty and extremely sturdy to operate offshore. And while land-based wind assessment often occurs by placing meteorological equipment on a tower, the challenges of anchoring similar towers into the ocean floor can increase costs substantially. As a result, offshore energy developers are looking at new ways to gather precise wind measurements at sites of interest.

Among the new technologies expected to undergo testing at the reference facility are devices incorporating LIDAR, also known as light detection and ranging, to measure offshore wind speeds.

With these instruments, researchers measure wind strength and direction by emitting light and then observing when and how some of that light reflects off of tiny bits of dust, sea spray or other particles blowing in the breeze. LIDAR devices for offshore wind measurement would go on buoys in the ocean. However, ocean waves move buoys up and down, which would also send the device’s light beams in multiple directions. So scientists have developed methods to account for a buoy’s frequently changing position to collect the wind data they need.

That’s where the reference facility comes in.

Mathematically corrected data from buoy-based LIDAR is a new ballgame for the wind energy industry. To prove the data they collect are reliable and accurate, wind assessment LIDAR devices would go on buoys floating near the facility and also on the facility itself. Researchers would be able to collect wind data from both sources and evaluate it to determine the buoy-based technology’s accuracy.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me