Optimize automation design for serviceability

Machine builders specializing in factory automation and assembly systems are challenged at every turn. Capital equipment investment is high, material and labor costs are increasing, competition is growing fiercer and customers are demanding faster delivery. It’s not surprising that machine manufacturers are constantly seeking ways to contain costs and increase efficiency, while maintainin...

03/01/2010


 

 

Machine builders specializing in factory automation and assembly systems are challenged at every turn. Capital equipment investment is high, material and labor costs are increasing, competition is growing fiercer and customers are demanding faster delivery.

 

It’s not surprising that machine manufacturers are constantly seeking ways to contain costs and increase efficiency, while maintaining strict quality and performance standards. One approach that has worked for many automation industry leaders is adoption of a design engineering strategy that standardizes on configurable machine parts, wherever possible, in order to replace unique custom-designed components with more modular and readily accessible ones.

 

For machine builders, this strategy has proven effective in helping reduce engineering and production time and costs %%MDASSML%% often as much as 50%. However, what many have also learned is that specifying modular, configured parts rather than custom parts has also helped their customers by making it easier to maintain and repair equipment.

 

Faster access to configured parts allows end users to eliminate the time, expense and hassles associated with ordering custom-designed parts. They can also reduce the need for substantial replacement parts inventory.

 

The importance of serviceability

Like automation system producers, plant operations and control engineers also face challenges. Their role is to keep mission-critical operations up and running smoothly, safeguard worker safety and see that quality standards are met. To do this, they need to ensure that machines are monitored and equipment is maintained and serviced properly. They need to ensure that replacement parts are readily accessible when required. In their world, unscheduled downtime caused by equipment failure is simply not an option.

 

In any machine, many mechanical parts are subject to wear and tear and must be maintained, and repaired or replaced. High stress parts need to be replaced more frequently so they don’t malfunction and cause production problems. In fast-moving plant automation lines, machine wear is caused by physical forces such as load, torque, friction, impact shock, heat, vibration, length and frequency of motion as well as humidity and any other atmospheric factors %%MDASSML%% all of which can have a negative impact on the performance and reliability of the machinery over time.

 

Modular, configurable parts can help

The concept of standardization is simple, yet effective. Some commonly used configurable parts include linear shafts, actuators, linear guides, ball screws, bushings, locating pins, metal plates, extrusions and conveyor rollers.

 

Machine builders can specify the parts in various sizes, material hardness and coatings and sometimes can order specific tooling modifications. Once a part has been configured and the model downloaded, it can be added to that machine’s bill of materials. Some part suppliers will even standardize the part within its product database, assigning it a unique part number for fast and easy replacement ordering.

 

Adding value

The benefits that automation system end users can derive when their equipment manufacturers specify configurable parts include:

 

  • Fast, easy ordering of replacement parts with short lead times mitigates the need to maintain safety inventories of replacement parts; an order is quoted and placed with a part number %%MDASSML%% not a drawing

  • MRO time and cost savings, because configured parts are less costly and can be ordered and delivered faster than custom replacement parts

  • Product life cycle information can often times be obtained for each discrete configured component from the machine builder and/or part supplier detailing the average life expectancy of each part (or mean time between failure), based on formulas that measure the effects of physical forces to which the part is subjected

  • Higher return on assets for capital equipment is also achievable as a result of keeping automation machinery and systems in optimum condition to deliver peak performance

    • Machine builders focused on optimizing machine designs for serviceability not only derive benefits for their own companies, but also provide significant and measurable value to their customers.







No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
click me