PLC architecture can provide high safety integrity

There's no safety like nuclear safety. Consequently, process safety instrumented systems (SIS) requiring a high safety integrity level (SIL) can benefit from a programmable logic controller (PLC) architecture used in nuclear safety systems. (See this issue's cover articles for related safety topics.

09/01/1998


There's no safety like nuclear safety. Consequently, process safety instrumented systems (SIS) requiring a high safety integrity level (SIL) can benefit from a programmable logic controller (PLC) architecture used in nuclear safety systems. (See this issue's cover articles for related safety topics.)

For instance, a PLC module developed by Framatome Technologies is among those using redundancy and diversity to enhance reliability. If an unsafe condition is detected, the module's two safety-function microprocessors can cause any of the relay outputs to open. Watch-dog timers will open the relay outputs if either processor stops running. Also, an OR gate can be substituted for the AND gate for devices requiring a contact closure (non-failsafe output) to actuate.

Using microprocessors that differ in design, microcode, and software compiler manufacturer minimizes common mode failures that could defeat safety interlocks. Using a common functional design document, diverse software is developed by two software teams working independently. Software is then tested and validated by a third team, independent of the developers.

Different microprocessors with different software ensure the SIS will achieve its safety mission, even if a hardware and/or software fault disables one microprocessor.

Diversity aids reliability

The PLC's self-contained redundancy and diversity complements other redundant and diverse elements to provide an SIS with SIL 3 integrity. SIL 3 is quantified in the ANSI/ISA-S84.01-1996 standard, "Application of Safety Instrumented Systems for the Process Industry," as a probability of failure on demand average range (PFD avg) of 10-3to 10-4.

Specifying diversity in sensor type, manufacturer, and activation methods reduce common mode failures. For example, using one RTD (resistance thermal detector) and one thermocouple, and pressure sensors and ventvalves from different manufacturers, reduces common mode failures. Adding a hardwired, manually operated emergency shutdown circuit also provides diversity. When a high-high pressure, or high-high temperature input signal is detected, the PLC's fail-safe outputs open redundant emergency vent valves to depressurize the reactor.

PLC testing is done on line using continuous diagnostic routines. Off-line testing uses a test computer that injects simulated process signals into the PLC module. Input signals are varied by the test computer and PLC output responses are monitored. Both microprocessors are tested at the same time, and hard copy test records are developed.

Shared memory and a separate microprocessor in the PLC module handle communications with external systems. This architecture makes SIS data available, yet prevents communication interrupts from interfering with safety requirements. This PLC architecture provides the same high reliability and high availability of two PLCs.

For more information about Framatome Technologies, visit www.controleng.com/info .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
click me