Power modules with additional low inductive current path

Parasitic inductances are a major problem with power modules, in particular in fast switching applications.

06/06/2011


Parasitic inductances are a major problem with power modules, in particular in fast switching applications. The parasitic inductance of the component interconnections causes an overvoltage condition and increases the switch-off losses in the semiconductor. Many initiatives have been investigated to reduce the parasitic inductance in power modules utilizing a complex mechanical construction of overlapping internal bus bars forming the dc path.

The first results of the new idea to separate the current paths into a static low resistive screw contact and in a transient low inductive PCB-based connection are promising. The limit for reduction of stray inductance is not yet reached. The new solution is a new milestone for low inductive high power module technology. The 2nH target turns from an imaginary target into a realistic one and it opens the field for new fast high power module topologies.

Vincotech’s article about “Power Modules with Additional Low Inductive Current Path” outlines a concept using today’s standard power module construction but providing an additional ultra low inductive path for the transient current.

www.vincotech.com



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Intelligent, efficient PLC programming: Cost-saving programming languages are available now; Automation system upgrades; Help from the cloud; Improving flow control; System integration tips
Smarter machines require smarter systems; Fixing PID, part 3; Process safety; Hardware and software integration; Legalities: Integrated lean project delivery
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.
This article collection contains several articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again