Prescription for hospital, health care electrical system success

Hospital and health care facility projects are especially important due to their sensitive nature. Electrical and power systems must be carefully designed.

11/26/2013


Michael Chow, PE, CxA, LEED AP BD+C, Member/Owner, Metro CD Engineering LLC, Powell, Ohio. Courtesy: Metro CD EngineeringGeorge Isherwood, PE, Vice President, Peter Basso Associates, Troy, Mich. Courtesy: Peter Basso AssociatesMichael Lentz, Associate, RMF Engineering, Baltimore. Courtesy: RMF Engineering

Participants

Michael Chow, PE, CxA, LEED AP BD+C, Member/Owner, Metro CD Engineering LLC, Powell, Ohio

George Isherwood, PE, Vice President, Peter Basso Associates, Troy, Mich.

Michael Lentz, Associate, RMF Engineering, Baltimore


 

CSE: What’s the one factor most commonly overlooked in electrical systems in hospitals?

Chow: Understanding and incorporating the applicable codes and standards for a hospital is commonly overlooked. A hospital may be certified by The Joint Commission and an engineer designing a remodel may inadvertently overlook their standards and requirements.

Lentz: What equipment that the owner would like to see on emergency power and what the code actually allows on emergency power. For example, in a patient room, hospitals would like the lighting on emergency power on the life safety branch, but code does not allow lighting on a life safety branch. So in order to provide that, it would then require additional panels and transfer switches to put the equipment on emergency power, but results in increased project costs and space requirements. 

CSE: Describe a recent project in which you had a complex standby, back-up, or emergency power design.

Lentz: Inova Women’s Hospital has three 2 MW 5 kV generators paralleling with the utility system and four distribution sub-stations. Three 2 MW, 4.16 kV enclosed diesel engine electric generators (EGs) and auxiliary systems were provided in a designated outdoor yard, remote from the hospital central plant. The 2 MW emergency generators were paralleled through the emergency generator 5 kV paralleling switchgear (EGPS). The EGPS was configured with two outgoing main breakers to the normal 5 kV switchgear, one bus tie breaker, two emergency generator auxiliary load breakers, existing plant breaker, and three generator breakers. Although the generators were intended to be used as standby generators only, the use of a selective catalyst reduction (SCR) system was provided in the design. The SCR system reduces engine emissions, specifically NOx up to 90%, and has become a required component in most new generator installations to meet state/U.S. Environmental Protection Agency emissions requirements. The SCR system consists of an injection/mixing pipe, catalyst housing, solution storage tanks, solution transfer pumps, and associated control panels. The generator assemblies were contained in pre-engineered sound attenuated enclosures. The enclosures achieve a 40 dB(A) reduction of the generator set source noise, as measured at 1 meter from the enclosure.  

CSE: What unique NFPA 99: Health Care Facilities Code issues have you encountered, and how have you resolved them?

Chow: The 2014 NEC has a proposed change to increase the minimum number of receptacles for a patient bed in a critical care area from 6 to 14 receptacles. This would coordinate the requirements between the NEC and NFPA 99.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me