Process control: what to teach?

There is an ongoing debate in chemical engineering departments on what should be taught in an undergraduate process control course. How can we better prepare students for what they will see in industry upon graduation? Topics covered in a typical 15-week university control course include dynamic behavior, with one week on Laplace transforms and analytical solutions to differential equations, ph...

05/01/2006


There is an ongoing debate in chemical engineering departments on what should be taught in an undergraduate process control course. How can we better prepare students for what they will see in industry upon graduation?

Topics covered in a typical 15-week university control course include dynamic behavior, with one week on Laplace transforms and analytical solutions to differential equations, physical and empirical modeling, computer simulation, measurement and control hardware technology, basic feedback and feedforward control concepts, and advanced control strategies.

I have recently received feedback from practicing engineers about the importance of these topics. While the need to understand Laplace transforms, frequency domain analysis, or relative gain arrays may not be widely applicable, the knowledge of how to control processes using measurement feedback is applicable to almost every job a young graduate may encounter. It should be considered a basic building block of their education.

Roots in reality

New engineers should also understand that process control is a natural extension of material and energy balances in process plants, and that dynamic loops are needed to maintain these balances. Practical aspects of process control—such as understanding control objectives, how a control strategy fulfills these objectives, how to tune control loops, and understanding dynamic interactions among process variables—are often learned on the job, after graduation. The disturbing fact is that many recent graduates feel shortchanged when they learn how critical process control is to their job effectiveness, and how little they understand about it from their undergraduate education.

To further illuminate the skills and concepts that industrial employers find important in a chemical engineering graduate, an informal survey was conducted of 34 industrial practitioners who represent the biotechnology, pharmaceutical, petroleum and petrochemical, chemical, consumer product, and process control consulting business areas. Each of these individuals was asked to rank-order a list of 10 skills and concepts, with 10 being the most important (average ranking is in parentheses):

  1. Optimization of a process or operation (8.6);

  2. Statistical analysis of data and design of experiments (7.2);

  3. Physical dynamic process models (7.0);

  4. Statistical or empirical dynamic process models (6.9);

  5. Multivariable interactions and multivariable system analysis (6.6);

  6. Statistical process control and process monitoring (5.3);

  7. Design and tuning of PID loops (5.1);

  8. Nonlinear dynamics and analysis of nonlinear systems (3.9);

  9. Frequency domain analysis (2.4); and

  10. Expert systems and artificial intelligence (1.9).

 

  • Highest ranked, not taught

As you can see, process economic optimization received the highest average rank; however, it is not typically covered in an undergraduate process control course. Process modeling and identification (items 2-4) may be skills that should be emphasized more. It is interesting that frequency domain analysis, which received the second lowest average ranking, is not perceived as directly relevant to industrial practice.

There is a clear preference for coverage of multivariable systems, but while it and loop pairing are presented in most textbooks, it is unclear how many instructors actually have time to cover this topic. High rankings for statistical analysis of data and statistical process control/monitoring hide the bimodal nature of the answers: respondents from more mature industries ranked this skill lower than respondents from the biotechnology and pharmaceutical industries.

Give us more "grist for the mill," as the debate on what to teach continues; in the subject line of an email, write Teach this... and send your opinions to controleng@reedbusiness.com .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.