Programmable controllers: How it all began

This is the 40th anniversary of the beginning of the programmable logic controller (PLC). It started in 1968 and is a real-time device that acts as the modem to your process. It is not part of the computer. My work from 1954 to 1964 was working in specialized projects such as aircraft and memory for computers.


This is the 40th anniversary of the beginning of the programmable logic controller (PLC). It started in 1968 and is a real-time device that acts as the modem to your process. It is not part of the computer.

My work from 1954 to 1964 was working in specialized projects such as aircraft and memory for computers. I sat in a back room and made sketches, diagrams and reports. On New Year’s Day 1968, I outlined a device to get rid of all the projects I have ever worked on. The philosophy had to be definitive; factory floor and electrical technician- and electrician-oriented. It had to accept heat, never fail or be turned off, substantially over-engineered and be Coke proof. Also, if I did it right, it would make money for me while I slept nights instead of sitting there at my desk. That was the hardware.

The philosophy of the inside system was the device would take a snapshot of the process, then process the interrelationships between the components, needs and logic of the process and ship the results of that analysis back out to the process.

In other words, it would take a snapshot at a time rather than continuous solutions. I had hoped this would take care of the inter-modulation effects, namely, the interaction of two events that lead to oscillations and strange phenomena associated with the older ideas of control software.

The memory had to be exquisitely reliable. At that time, we used a thing called core memory threaded on copper wires. This was sufficient for all our needs. They tried to sell me low cost, cheap, fast-core memories, and I suggested otherwise. Claude Shannon’s equation in 1948 suggested that reliability and bandwidth are a function of signal-to-noise ratio. I wanted the signal to be strong enough to be resistant to external magnetic and electrical fields.

The hardware had to have no fans with all conductive cooling, sealed, spark immunity. And each of the circuit boards (there were three at the time) would view the world thermally through a copper sheet. Between each printed circuit board, there was a copper sheet that conducted the heat to the outside world.

The hardware had to look good to manufacturing, be power- and voltage-insensitive, rugged and high priced. I knew then cost was a bad word. We believed our user would want total value, not entry costs. If the programmable controller saved one month of factory up-time, it was worth a million dollars.

The software was designed for the problem, to be implemented by the electrician and resulted in an adversary relationship with academics. The academics wanted to build microsecond performance while forgetting about quantum theory. The quantum effects of a factory are rather simple. There was a pulse of power every 8 milliseconds in the U.S. Nothing can occur any faster than that other than very special processes. Again, the 80/20 rule applies: 20% of the effort will solve 80% of the problems.

The aim of the programmable controller was all relays cannot excite themselves in less than the power cycle process. If you think about it, 25 to 50 Hz is very high speed for bandwidth performance in a factory. All I had to do was make sure all problems %%MDASSML%% independent of load %%MDASSML%% did all their processing during that lump of energy in the power line. We were coupled to the environment and the electrician, not to the dream of higher bus bandwidth inside the computer.

The language, besides being fast enough, had to satisfy the hard real-time performance. This means each execution had to be accomplished in the same vision time as it happened the last time, independent of excitation which totally ruled out interrupt structures.

The language had to be robust and never need repair. Instead of a go-to language, we made it come-from logic, or rather a whole sequence of if/then statements with only four references per line.

One or two contacts are useless, three are the minimum, and I threw in an extra one to make four. It’s called relay logic. I do not know where the original relay logic came from, but most diagrams with banks of relays had logic diagrams that I believed were developed by the Germans. It represented symbology for relays open and closed. All these lines of logic had to be standalone with no interrupt. And though everyone argued for Boolean, none of the electricians understood Boolean. They did understand relays. The scan was content-independent of activity.

Conventional logic in software then (and still today) means there is a single track or flowchart that if one of the components fail, the whole system grinds to a halt. Modern object-oriented software systems have independent operations. We used this same approach in 1968 to make sure that when a single independent operation failed for some reason, all the other operations continued on.

In marketing, we decided this was not a computer. Although we used computer science for design, we had to erase every reference to the word computer. We erased the blackboards and took the paper away from people if the word computer was on it. We had to be real jerks. Language and names carry baggage, and we had to eliminate the baggage.

Hitting the market

We made our first sales trip going up to Bryant, in Springfield, VT, and the first programmable controller was in my old self-repairing Pontiac’s trunk. They opened the cover and said it was wonderful. “It’s not another piece of pastel-colored sheet metal.”

At that time, we did not know what we had built. We just wanted to get rid of a problem that had plagued me for four years in specialized systems. What it did for the customer was reduce the time to market from months to weeks on a Greenfield project, and maintenance was really low %%MDASSML%% it runs forever. We got our original money from one of the founders of Digital Equipment Corp., who was making, or so they thought, a competing product.

We developed a programmable controller independent of anyone else. If we had known General Motors had a specification out and Digital Equipment had their PDP-14, we possibly would have never started the PLC story. Even though we are from MIT, we are not that dumb.

We started it with a cold specification without paying any attention to the specifications of the users. Our first big customer was General Electric. They made an over-the-transom request to buy our units on an OEM basis. GE would private-label our units for their own use. The first one was delivered to Landis, PA. Our biggest market development early on was in Japan with Yaskawa and Toyota. The units were called 084, 184, 284 and so on, because hypothetically it was the 84th project in Bedford Associates; our original contracting firm founded in 1964. The 084, was designed by the original team and did not sell well. Professional marketing and engineering then came in and made it a winning unit and program called the 184.

Editor’s note: as part of the celebration of the 40th anniversary of the PLC, this article, which is written by the Father of the PLC, Dick Morley, is adapted from the Aug. 2008 issue of ISA’s InTech magazine and appears here with permission. For the full text, go to .

Author Information

Dick Morley ( ) is widely known as the Father of the programmable logic controller.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security