Project success is the sum of all parts

In a data center, uptime is more than just the sum of its pieces.

09/27/2012


DeCoster is CEO of Mission Critical West. He is an acknowledged expert in critical facilities infrastructure, and has consulted for hundreds of data centers and satellite earth stations over his 30-year career.In most cases, following best practices can resolve nearly any engineering issue. Let me give you an example. 

On the surface, the data center had all the pieces: good engineering, commissioning, proactive maintenance, training, procedures, monitoring, and redundancy. Uptime should be assured. Yet in one reported outage event earlier this summer, it all came crashing down. What happened? 

Several things happened. A double substation utility power loss from a cable fault started the mess, perhaps a bit uncommon but not rare. The site went to generator backup; OK, so far so good. But then one generator that was maintained earlier went offline due to overheating. A cooling fan that did not operate was the culprit, perhaps due to a human error following maintenance. Then the distributed loads failed over to another protected power feed, which immediately opened due to an incorrectly configured circuit breaker. Then the IT software attempted to transfer the affected loads transparently to another site, except that the transfer failed causing a catastrophic crash. On the surface, none of the four events should have affected loads. In fact, no two or even three of them should have. 

This story is not unique. Several other major data center load losses have occurred in the past year alone, all with some kind of redundant configuration. Yet in a recent study I did on data center availability, we discovered dozens of data centers with less than Tier IV resiliency that experienced no load losses, in some cases for periods of more 15 years. So what lesson, if any, is behind all of this? 

Data center availability or uptime is more than the sum of its pieces. The sites we found that were successful routinely employed “best practices” at virtually all phases of design, construction, and operation.  Engineering took into account lessons learned from early grid collapses, technology improvements, and cumulative industry failure assessments. Monitoring was excellent and done in real time, often with trending information. Configurations, even if less than 2N+1, were sound for the mission and more redundant in areas known to be weakest, such as batteries as opposed to magnetics where budgets were at issue. Labeling was clear and complete. 

Commissioning was not just done, but done correctly. Maintenance was reliability-centered, proactive, and managed. Security and change procedures were rigid. Vendor technicians were not allowed to go off script. If any component with system impact was changed out, testing followed on that subsystem before it was relied upon. There were double sign-offs on method of procedure/method and procedure (MOPs/MAPs) before any actions on critical gear.  Escalation procedures were in place and instantly available on building management system/network management system (BMS/NMS). And in the optimal case, almost every conceivable failure eventuality was brainstormed by stakeholders, with simulations scripted and rehearsed for both system effect and personnel training. All of these separate considerations must be integrated, not just into the formal plan, but into the mind-set. In large measure, it is attitude. And commissioning and continued testing are particularly critical. 

Commissioning, or testing in a broad sense, provides piece of mind to data center management. “We passed Cx” sounds good, but what does it mean? You load-banked a UPS or genset for hours. You checked harmonics. Great, but what happens in a real-world transfer scenario when phase displacement exists, or poor power factor (PF), or high capacitance, or cumulative inrushes, or improperly high recharge, or something else? A 15-minute multi-string sealed battery was rundown tested, but was it tested with one string out? The replacement circuit breaker (CB) arrived, but did you notice that it was set to fastest trip for legal reasons? 

Every subsystem should be individually wrung out at worst-case conditions, then the entire system should be tested in the worst-case anticipated loading and transfer scenarios. Any major changes or modifications to critical elements afterward signal a need for reasonable retest for confirmation. This requires been-there, done-that experience to execute well, but these steps may have saved a crash one summer day. 

Murphy’s Law says if something can go wrong, it will. To combat Murphy’s Law when engineering building systems, follow best practices.

 


Dennis DeCoster is CEO of Mission Critical West. He is an acknowledged expert in critical facilities infrastructure, and has consulted for hundreds of data centers and satellite earth stations over his 30-year career.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me