Pump efficiency drives cost savings

Many plants continue to consume far more power than is necessary to run their pump systems, simply because there is a lack of awareness of the losses. Recent educational efforts are starting to bring those issues to the forefront.

04/24/2013


Editor’s note: The following article is based on a Plant Engineering webcast presented by Mike Pemberton, ITT Goulds Pumps, in September 2012. Readers can find the presentation slides and audio under the webcasts section of www.plantengineering.com/webcasts.   

The drive to save energy in pump systems is not just about conservation or environmental concerns; it is primarily a bottom-line cost issue. Recent surveys show that energy efficiency is among the top three concerns for most industrial plant managers. Many plants continue to consume far more power than is necessary to run their pump systems, simply because there is a lack of awareness of the losses—out of sight and out of mind. In recent years, educational efforts initiated through public, private, and nonprofit sectors have begun to bring these inefficiencies to light.

According to the U.S. Dept. of Energy, electricity dedicated to electric motor-driven systems accounts for more than $33 billion annually. The American Council for an Energy Efficiency Economy recently published estimates that reductions in motor system energy costs could save plants up to 42% of their annual spend dedicated to energy and maintenance for pump systems, which in some cases can amount to millions of dollars. This article will lay out the framework for adopting an energy-efficient model that meets the needs of continuous process industrial plants and that will ensure smoother and more reliable operation going forward. 

Seeing excess energy as a potential resource

The combined cost of energy, along with maintenance and repair, makes up more than half the overall lifecycle cost. Courtesy: ITT Goulds PumpsPlant managers continue to invest most of their available capital in implementing traditional expansion and modernization projects, instead of earmarking funds for long-term energy savings efforts. Furthermore, short-term, expense-based solutions do not address fundamental changes that need to be made for plants to grow and profit in the future. The Finnish Technical Research Center has found that, on average, process pumps operate at less than 40% efficiency, and more than 10% of pumps run at less than 10% efficiency. This is a sizable efficiency loss, adding up to millions of dollars, which can only be addressed by a long-term commitment to reengineering 10% to 20% of a given plant’s pumping and process subsystems.

While the efficiency achieved by a pump is dependent on make and model, pumps generally are designed to operate between 65% and 85% mechanical efficiency. Every watt of power wasted is converted to heat and vibration. This reduces equipment reliability and can eventually cause infrastructure damage, raising equipment maintenance costs and degrading process control loops.

On August 30, 2012, President Obama issued an executive order, directing the Departments of Energy, Commerce, and Agriculture and the Environmental Protection Agency to help states secure energy efficiency investments. The government estimates manufacturers could save at least $100 billion in energy costs over the next decade. 

Case studies: Efficiency in practice

Some industrial plants already are reaping the rewards of optimizing their pump efficiency to conserve energy and reduce costs.

A food processing plant operating a cooling tower pump system required 60,000 to 90,000 gal. of water depending on the season. An in-depth analysis determined that the parallel pumps in the system were oversized and operated against isolation valves that were 40% open, on average. By fully opening the isolation valves to increase flow, the cooling tower system was able to meet seasonal demand with five fewer pumps. This represented, based on their $0.04 kWh cost, an annual savings of $380,000. Plus, after qualifying for local utility rebates, the plant received another $100,000 in rebates.

In another example, a pulp mill digester faced similar inefficiency issues with its pump system. The digester releases chemicals when cooking wood chips and subsequently removes them through a stock washing process. The mill was running an oversized pump system designed to deliver more than twice the needed capacity. The pump was routinely damaged during start-ups and shut-downs, and the end-user control valves were normally 20% to 40% open. As a result, excess energy caused pipe and gasket failures with resulting downtime. The pulp mill achieved annual energy savings of $32,000 by installing an automated isolation valve and a low voltage (460V) 200 hp motor and VFD. The mill has not experienced any major equipment failures since the system improvements were made over five years ago. In addition, the pump and valve automation eliminated a $1 million annual downtime expense from lost production and repairs. 

Energy efficiency starts with changing perspectives

To get started on the road toward energy efficiency, first take a step back to see the bigger picture—and understand that energy usage, process control, and equipment reliability are all interrelated. The amount of excess (destructive) energy used in a pump system will seriously impact plant productivity as well as long-term sustainability.

Pumps are designed to operate near their best efficiency point to ensure smooth flow through the system with minimum energy use and maximum reliability. An enormous cost that often goes unrecognized is in using more than the required energy to move fluid through multiple pump systems. Process pumps are the biggest consumers of motor energy in many continuous process plants. These pumps are often mis-sized and, as a result, cost more than most people anticipate. Maintenance costs are inordinately high, unplanned downtime lowers productivity, and employee safety can become an issue.

Poorly designed pump systems are a major cause for concern. These pumps can lead to costly problems, such as process leaks and fugitive emissions. Replacing worn-out parts of a pump in a piecemeal way can also degrade a pump’s performance; i.e., delivering less head and flow.

In evaluating process control, take a hard look at the number of control valves that are operating in manual. It’s not atypical to find that 30% to 60% of automatic control loops have been switched to manual. While throttling valves reduce pump discharge pressure and flow rate, doing so excessively can decrease the reliability of pumps, consume excess energy that is destructive, and decrease control loop utilization, thereby lowering the return on control system investment. 

Practical advice can lead to big savings

Start saving on energy costs by screening pump systems to identify the top 10% to 20% that consume the most energy. First, check to see which pumps can be turned off. Then look for the following symptoms to determine which pumps systems might be using too much energy:

  • Throttled valve-control systems
  • Bypass (or recirculation) line that is normally open
  • Constant pump operation in a batch process
  • Frequent cycling on or off in a continuous process
  • Presence of a cavitation noise at a pump or valve
  • Multiple parallel pump systems with units that are always on.

Check your repair history to see which parts of pump systems have required the most maintenance. More likely than not, those pumps are unreliable and should be repaired or replaced.

Another important step to take is to conduct an energy efficiency audit. The U.S. Department of Energy offers a valuable publication, Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations, to help industrial sites improve efficiency. Suggestions include assigning the right people to assess energy efficiency, holding them accountable, and clearly communicating the benefits of an energy audit.

Excess energy is a destructive force as well as a source of energy when reduced. By optimizing efficiency, plants can realize millions of dollars in savings. Adapt the simple screening methods mentioned above and regularly track the data garnered from condition-based monitoring to develop a plan that is specifically tailored for your plant. Doing so will help not only protect the environment but also protect your profit margin.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.