Real-time power management is a plant manager's secret weapon

Power management system software needs to allow plant managers to control operations to increase system utilization and keep overall costs down

12/05/2013


Figure 1: Estimated production loss $ per outage event for large (50 MW) industrial users. The graph shows the increasing loss in revenue for longer outage times. Production loss per Event = $/kW x Recorded Peak kW. Courtesy: ETAPA modern power management system requires new techniques and cutting edge technology to allow electrical power users and producers to be competitive. In light of rising electricity costs and disruptive power outages, it’s imperative for power management system software to put plant managers in control of operations, maintenance, and planning of the electrical system – resulting in optimum system utilization, lower costs, and financial stability.

This new breed of model-based power management application should have the capability to integrate an active blueprint of the system including system topology, engineering parameters and other pertinent information with time-synchronized-data acquired for the purpose of depicting the actual operation of the system.

Advanced applications and simulation engines should allow improved situational awareness, look-ahead proactive approach and improved decision making for operators under emergency conditions. The same power management system should therefore serve operators, engineers, planners and managers by providing pertinent information to various levels within the enterprise. The information should be available to engineers and planners via desktop clients while the operators and managers can also rely on thin clients. 

Model validation

One of the key advantages of utilizing a model based power management system is maintaining consistency of the network model across engineering, planning, protection and operations department. Traditionally, real-time systems use power system models that differ considerably in detail and structure from the models used for offline studies. Linkages between the different models are typically not maintained, and the different models often have incompatible data formats.

Planning and operating decisions are based on the results of power system simulations. Optimistic models can result in under-investment or unsafe operating conditions while pessimistic models can also lead to unnecessary capital investment, thereby increasing the cost of electric power. Realistic models are needed for ensuring reliable and economic power system operation.

Hence it is a very crucial phase to verify & validate (V&V) the network model with real-time and/or archived data and prepare a benchmarked model for:

  • State estimation / Monitoring
  • Predictive simulation “what-if” analysis
  • Forensic “root cause & effects” analysis
  • Optimization
  • Proactive contingency analysis & Remedial Actions  

This can be achieved by utilizing a power management system that offers traditional simulation analysis tools on the same platform as the real-time operations tools. Doing so avoids the necessity to rebuild and maintain separate network models across various departments. 

Intelligent monitoring

System monitoring is the base function for any power management software. In addition, seamless integration with metering devices, data acquisition, and archiving systems are essential to monitoring software. Real-time or snapshot data are linked to an online model of the system for proper presentation of actual operating status. 

All this information should be accessible to the system operator through advance man-machine interfaces such as an interactive one-line diagram that provides logical system-wide view.

The next step is to process the telemetry data and determine the missing or faulty meter values using advance techniques such as State and Load Estimator (SLE).

The system should also be able to compensate for absence of physical meters by providing virtual metering of devices. Standard power monitoring systems are inadequate since they can only monitor based on the “eyes” you provide in the form of digital measurement devices. These devices can cost $5,000/unit depending upon their complexity and it quickly becomes prohibitively costly to install such meters at every location.

Virtual meters not only improve situational awareness, but also provide a means to alarm equipment (especially low-voltage) that is not visible to a traditional power monitoring system. A model-based power management system uses existing metering devices and makes estimates for the portions of the system that is not monitored.

A chemical plant avoided installation of five such meters and relied on estimated data for non-critical areas and realized a savings of $20,000 in capital expenditure immediately and enjoyed the supplementary benefit of complete system visibility and information for every load in the system.

Dashboards and thin clients

Energy dashboards summarize and record alarm conditions in case of unusual activity and provide continuous visual monitoring of user-selected parameters in any mode of operation. This provision would allow early detection and display of problems before a critical failure takes place. A modern power management system should not only provide monitored data via thin client, but also offer the following key advantages:

  • Utilize the same electrical model as the desktop client and the offline planning model without having to recreate or maintain copies of the model. This results in significant time and cost savings when building Human-Machine Interfaces (HMIs). Traditional power monitoring systems are inexpensive to purchase, but take up a significant amount of time, resources and engineering cost to setup the HMIs. Extensive engineering man-hours are also spent modifying the existing HMIs. While in a model based power management system, the offline study model can be simply transitioned and connected with real-time data.
  • Ability for the operator to recall and run pre-defined scenarios and get a simple decision (go / no go) especially when he/she is facing emergency conditions. Information overload will not only slow down every decision, it may invariably lead to complete system shutdown. 

Online simulation

System engineers and operators must have instant access to energy information and analysis tools that allow them to predict an outcome before actions are taken on the system.

In order to design, operate, and maintain a power system, one must first understand its behavior. The operator must have firsthand experience with the system under various operating conditions to effectively react to changes. This will avoid the inadvertent plant outage caused by human error and equipment overload. The cost of an unplanned outage can be staggering (See Figure 1 at top.)

For industrial and generation facilities that utilize power system analysis applications, the ability to perform system studies and simulate “What If” scenarios using real-time operating data on demand is of the essence. For example, using real-time data, the system operator could iteratively simulate the impact of starting a large motor without actually starting the motor.


<< First < Previous 1 2 Next > Last >>

VENTURA , Non-US/Not Applicable, Mexico, 12/12/13 07:37 PM:

It is a very useful information, thanks a lot
Congratulations.
SATYA , Non-US/Not Applicable, India, 12/22/13 10:49 AM:

Thanks for virtual metering information and its use. More details are welcome!
Can you provide more details on Lincoln Electric particularly the merits on which they have been selected.
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.