Redundant vs. fault tolerant fieldbus wiring

10/08/2010


Dear Control Engineering: I was watching one of the videos from Emerson Global Users Exchange, an interview with Scott Saunders from MooreHawke. We’ve been looking at installing some Foundation fieldbus segments, and I was interested in his comments about redundant and fault tolerant segments. What is the difference between those two approaches?

One of the things that users find scary about fieldbus architecture in general is that all the devices on a segment send their data over one cable, and if anything happens to that cable or supporting components, communication is lost to that whole group of devices. Users have tried to mitigate this by figuring out ways to add redundant components but still have all the signals transmitted by a single trunk line.

There are other approaches that create a fault tolerant situation where there are actually two trunk lines going to the segment. For all practical purposes, the segment is connected from both ends, and if a trunk line or power supply is damaged, the devices can still communicate in the other direction. This approach works equally well with Foundation fieldbus H1 and Profibus PA.

Redundant and fault tolerant wiring schemes add cost, but if you analyze the degree of criticality of the devices on a given segment, the cost of lost production from a failed segment can be much higher. Read Economics of Fault-Tolerant Fieldbus Wiring for a more in-depth discussion of these wiring strategies, with their costs and relative effectiveness.

--Peter Welander, pwelander@cfemedia.com



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
Selecting the best controller from several viewpoints; System integrator advice for the IIoT; TSN and real-time Ethernet; Questions to ask when selecting a VFD; Action items for an aging PLC/DCS
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.

(copy 5)

click me