Regenerative power units save energy

Spindle drives, decanter centrifuges, hoists, cranes, elevators, and torque dynamometer test rigs can save energy from frequent run and stop, deceleration with high inertia load, and overhauling torque by using a regenerative power unit. One application saves 54% of the power used, $1017 per year.


Figure 1 shows how regenerative energy is dissipated into heat loss by dynamic braking. Courtesy: Yaskawa America Inc.When an electric motor is driven by a variable frequency drive (VFD), electric power delivered to the motor is regenerated while the motor decelerates by applying negative torque to the motor shaft. Usually energy storage capacity inside the VFD is very limited so regenerative energy should be returned to the grid or quickly dissipated by a braking resistor. Otherwise, the dc bus will be overcharged and an over-voltage fault can occur. Dynamic braking resistors have been widely used to convert regenerated energy into heat loss because of simplicity and low installation cost, as illustrated in Figure 1. But a regenerative power unit provides a significant energy cost saving opportunity, especially in applications that require frequent run and stop, deceleration with high inertia load, and overhauling torque. Such applications include spindle drives, decanter centrifuges, hoists, cranes, elevators, and torque dynamometer test rigs. Electricity cost per kilowatt hour is getting more expensive. So it will be worthwhile to review the basics of regenerative units and understand estimated energy cost saving. Three types of regenerative power units are available in the U.S. market. Basic features and power topologies are explained and compared.

1. Regenerative converter

The regenerative converter is a cost-effective solution that can replace the dynamic braking transistor and resistor network. It absorbs excess regenerative energy from the VFD and returns it to the ac power source. Figure 2 illustrates the regenerative energy flow from a motor to the grid using a regenerative converter on the left, and detailed power circuit schematic with power switches on the right. During motoring, the VFD delivers power without the regenerative converter in the main power flow. So there is no conduction loss in the regenerative converter during motoring. The regenerative converter is activated when regenerative energy charges dc link capacitors of the VFD. The regenerative converter returns stored energy in the dc capacitors to the grid.

Figure 2 shows regenerative energy flow by the regenerative converter with a concept block diagram (left) and a power circuit schematic (right). Courtesy: Yaskawa America Inc.

The size of the regenerative converter is determined by the size of the VFD, regen power, and duty cycle. The 6-step pulse control method is used to keep the switching loss of power devices very low. For applications that require high duty cycle braking, the regenerative converter can significantly improve the system operating efficiency and reduce the cost of electricity [1-2].

2. Sinusoidal PWM converter

The sinusoidal pulse-width modulation (PWM) converter is a high-performance solution designed to regulate dc bus voltage under both motoring and regenerative power conditions. The grid side current waveform of the sinusoidal PWM converter is sinusoidal with very low PWM harmonic distortion, approximately 5% total harmonic distortion (THD). It is designed to meet the IEEE-519 standard. Input current is also controlled to synchronize with input grid voltage, which enables achieving unity input power factor. It is connected in series between the incoming power line and the VFD. An ac filter, such as an LCL filter [inductor (L)-capacitor (C)-inductor (L)], is used as an external component to reduce ac current harmonics.

Figure 3 shows regenerative energy flow with a sinusoidal PWM converter. The concept block diagram (left) illustrates the motoring and regenerative energy flow between the grid and a motor with a sinusoidal PWM converter. Actual power circuit schematic (r

The sinusoidal PWM converter in Figure 3 is ideal for applications that require very low current harmonic distortion to meet the IEEE-519 Harmonic Limits standard and have large overhauling loads or those that make frequent stops such as elevators, centrifuges, test stands, and winders. This can result in significantly reduced system operating costs of machinery by “re-cycling” the excess energy back to the power grid. The sinusoidal PWM converter package is highly efficient without the heat loss and mounting location problems associated with braking resistors. For reference, the unidirectional regenerative converter is a lower cost solution with a six-step waveform that does not provide IEEE-519 compliant current waveform.

(See additional explanations, more graphics and links on the next page.)

<< First < Previous 1 2 Next > Last >>

Paul , MA, United States, 03/22/13 09:26 AM:

Does anyone have some specific information about this technique: cost, pay back, net present value, design and installation time, maintenance costs / stoppages.

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me