Relay eliminates power failures

It's no secret that building evacuations disrupt productive workflow. And building evacuations may be caused when power fails to restore automatically through automatic and reliable transfers. Engineers can minimize power failures through transfer switches by following the model set by ARX Engineering, Alberta, Canada.

03/01/2008


It's no secret that building evacuations disrupt productive workflow. And building evacuations may be caused when power fails to restore automatically through automatic and reliable transfers. Engineers can minimize power failures through transfer switches by following the model set by ARX Engineering, Alberta, Canada.

Within a one-year period, three major facilities in Calgary, Alberta, experienced a failure of the utility source when power failed to restore automatically—resulting in building evacuations.

The increased frequency of power-transfer scheme failures is attributable to the age of the equipment in these large commercial buildings and the use of archaic technologies. These designs use devices such as electromechanical relays and pneumatic timers, which have a limited service lifecycle, in comparison to the more advanced micro-processor-based devices.

“Rather than continue to repair these problematic systems, ARX was determined to design a new modern protection and control scheme,” said Roland Davidson, R.E.T., operations manager at ARX Engineering. “The goal was a solution that would not only improve reliability but also enhance the performance of the system.”

With the backing of Brookfield Property Management and Oxford Properties, ARX Engineering designed a retrofit transfer scheme that improves reliability, meets the current utility requirements, provides enhanced protection features, and offers feedback to the building operators.

After consultation with Schweitzer Engineering Laboratories, Pullman, Wash., the design was constructed with a powerful and flexible microprocessor-controlled protective relay, the SEL-351 Directional Overcurrent and Reclosing Relay. The SEL-351 Relay is widely used at utilities and substations around the world because of its extensive monitoring, protection, communications, and automation features.

“At one facility, we installed two SEL-351 Relays on each of the main breakers plus four SEL-551C Overcurrent/Reclosing Relays on the feeder breakers,” Davidson said. “The scheme is a 25 kV preferred source with a hot alternate. Many of the major office towers in downtown Calgary are serviced by a 25 kV network with the preferred feed in one building being the alternate in an adjacent building. Upon the failure of one of the 25 kV feeds, the affected buildings will transfer automatically to their alternate source. The local utility (ENMAX) will then restore the buildings back to their original state after the problem is corrected under a defined procedure.”

Transfer scheme design parameters include a selectable preferred source, automated and synchronized transfer to a second source in case of power sags or other disturbances, and remote alarm notification to the building engineering staff should there be a loss of the standby (secondary) source. Overcurrent protection and lockout features are standard functions of the SEL-351 Relay.

“Event reports, communications, load profiling, ease of installation, flexible programmable logic, and enhanced protection features have considerably improved the reliability of this system for the property owners,” Davidson said.

With the successful installation of this system at five facilities within the Calgary marketplace, the building owners have seen the benefits of the installation in that they have not experienced any malfunctions and have renewed confidence in the event of a problem with the alternate supply. An unforeseen benefit is that they now are aware when the utility transfers them onto the alternate source without notification, and they are aware if there is a problem with the utility alternate source.

Information provided by ARX Engineering, Calgary, Alberta.



AT A GLANCE

Three facilities in Calgary, Alberta, experienced power failures due to poor transfer switches. Rather than repair problematic systems, ARX Engineering solved the problem by designing a retrofit transfer scheme constructed with the microprocessor-controlled SEL-351 Relay from Schweitzer Engineering Laboratories.

The relay features a breaker wear monitor; station batter monitor; remote and local control switches; synchrophasor measurements; and overcurrent protection that uses a secure mix of phase, negative-sequence, and ground overcurrent. For more information on the relay, go to



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.