Reviewing Connector Systems

Although electrical connectors are often thought of as a relatively minor component of industrial assembly and automation and control systems, their ability to perform reliably in these environments is critical to production uptime and quality control. With so many manufacturers now using advanced technologies—cellular manufacturing and assembly lines equipped with highly synchronized, co...

04/01/2006


AT A GLANCE

 

  • Connector systems

  • Less hard wiring

  • Secure, faster connection

  • Networks, more sensors


Although electrical connectors are often thought of as a relatively minor component of industrial assembly and automation and control systems, their ability to perform reliably in these environments is critical to production uptime and quality control. With so many manufacturers now using advanced technologies—cellular manufacturing and assembly lines equipped with highly synchronized, computer-based automation and control functions—cabling architecture has taken on new importance.

Manufacturing and plant engineers are taking a closer look at the quality, durability, and reliability of electrical and electronic cabling systems and connectors they deploy to support assembly and automation functions in which downtime is not an option.

Connector technologies have evolved to overcome multiple challenges.

From wires to cables

Like most manufacturing technologies, cabling and connector technologies are evolving to meet workplace demands for increased speed, performance, and reliability.

Connectors were first used on industrial sensors about 30 years ago and originally used on limit switches. At that time and throughout the 1980s, most sensors or switches were hard-wired into machinery. Cables from sensors and switches were routed through the wall of a wiring panel or cabinet, with each wire terminated under a screw. If a sensor or cable became damaged or failed, the entire connection had to be undone and rewired with a new switch or sensor—a time-consuming task resulting in significant downtime.

With modular "soft wiring" technology, and quick-connect sensors and connectors, users can easily replace a switch, sensor, or other component in five minutes or less, lowering labor costs and reducing downtime, with less production disruption.

Industrial-duty soft wiring systems—sensors and attached connectors—should be constructed to withstand the rigors of a typical industrial environment much like previous hard-wired systems.

As more fully automated machine systems were used, more sensors were required to control more functions, which led to smaller sensors and connectors that take up less space. Another advance has been the pre-wired, multi-port junction or distribution box, which allowed machine builders and system designers to combine redundant wires from as many as eight sensors and reduce wire count from 24 to 10, thereby reducing the amount of user wiring at the panel.

Today's connectors

Connector improvements continue; manufacturers' offerings vary. One connector system is based on a "push-lock" operating principle designed to go together faster, more reliably, and with greater ease than traditional threaded connectors. This new generation of connectors helps eliminate problems caused by intermittent connections, simplify machine assembly, and reduce ergonomic stress resulting from tightening rotating screw connectors. Installers simply push down to connect and pull up to disconnect. An audible "click" confirms proper installation. These non-threaded connectors feature a repeatable, reliable IP68-rated radial seal, which protects distribution boxes and cordsets from moisture exposure and chemical contamination and is completely operator independent. Once engaged, the system provides fail-safe connectivity, even under cable flexing, mechanical shock, and machine vibration. Connectors are backward compatible to standard M12 connectors.

Reduce production downtime

Standard, threaded M12-type connectors often challenge installers, who have to "feel" when a connection is complete, introducing variability and uncertainty. Intermittent connections—those that switch on and off at random for no apparent reason—are among the most vexing problems in an industrial automation line, resulting in hours to diagnose, repair, or replace. This equates to many thousands of dollars of lost productivity in an automotive assembly or finishing plant.

Traditional threaded connectors can be difficult to assemble in a tight location. Cross threading can occur, particularly in "blind-mating" conditions, where the operator can't see the mating receptacle. A connector can feel fully mated, but represents a future point of intermittence or moisture penetration when cross-threaded. Locking connectors are easier and can reduce ergonomic injury in long-duration assembly tasks.

More uptime

Industrial manufacturers need to apply due diligence in their selection of components that comprise the foundations of industrial assembly, automation, and control systems. Far from being an afterthought, an industrial-strength cabling infrastructure is essential to manufacturing and business performance.


Author Information

John Sullivan is director of marketing for the Brad Harrison Ultra-Lock Connector System at Woodhead Industries Inc.,




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Intelligent, efficient PLC programming: Cost-saving programming languages are available now; Automation system upgrades; Help from the cloud; Improving flow control; System integration tips
Smarter machines require smarter systems; Fixing PID, part 3; Process safety; Hardware and software integration; Legalities: Integrated lean project delivery
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.
This article collection contains several articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again