Robustness and reliability in CAN-based networks

When CAN-based networks were first used in industrial automation, the robustness and the reliability were key issues.

06/20/2014


Courtesy: CAN in AutomationIn the early 90's, when CAN-based networks were first used in industrial automation, the robustness and the reliability were key issues. This has not changed until now. In applications in which robust and reliable communication are required, CAN-based solutions are a good option. The residual failure detection capability is high. The CAN protocol built-in failure detection mechanisms allow detection of up to five randomly distributed bit-failures or a burst of up to 15 bit-failures. In case of failure, all nodes in the network are informed about the detected error. All nodes discard this message, so that data consistency is still guaranteed. The faulty message is re-transmitted automatically. There is no handshake procedure necessary. This makes the failure recovery very fast; under normal conditions, the retransmission is caused after 23 bit-times, even in case of local failure. The recovering time for global failure is 17 bit-times. When there is a permanent failure in one node, it goes bus-off, in order to not disturb the communication of the others.

Besides reliability, in industrial applications robustness is required. In particular, the EMC performance is important. The usual differential voltage on the CAN high-speed bus-lines compliant with ISO 11898-2 provided is quite immune against electrical disturbances. Nevertheless, the most critical part is the design of the CAN physical layer, the network topology, and the optional protection circuitry. DeviceNet, one of the CAN-based higher-layer protocols provides in its specification, strict rules for the network design. CANopen, another CAN-based higher-layer protocols, gives just a few recommendations: bit-timing settings including sample-points, network length at given bit-rates, maximum length for single and all not terminated stubs. All the CAN controllers and transceivers are available in industrial temperature ranges, but also in extended (automotive) temperature ranges. This means, CAN-based networks are also suitable for outdoor applications and other challenging environments. CANopen is for example used in subsea applications as well as in the outer space in satellites.

All CAN-based networks need to be terminated at both ends when using bus-line topologies. If you do not use the appropriate termination resistors (e.g. not matching the impedance of the bus-lines) communication may be corrupted. In the past, users have often forgotten the termination resistors. Therefore, many device manufacturers have integrated termination resistors into their products, which need to be disconnected when they are not installed at the end of the bus-line. This also leads to a mismatch with the network impedance and causes reflections, which could corrupt the communication.

Courtesy: CAN in Automation

When respecting the design specifications and recommendations provided, CAN-based networks are reliable and robust commercial communication systems. For more detailed information visit the CAN in Automation (CiA) web-site (www.can-cia.org).

- Edited by Brittany Merchut, Project Manager, CFE Media, bmerchut(at)cfemedia.com



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.