Rotary encoders provide variety

07/01/2000


T he most common feedback device used in motion control systems is the rotary optical encoder. Comments in this 'extra section' pertain to that encoder type. Typical encoder applications encompass machine tools, web handling equipment, robotic and vision systems, packaging machines, conveyors, gantry cranes, storage and retrieval systems, etc.

As mentioned in the main article, a standard way of increasing an incremental encoder's resolution is to count the leading and trailing edges of the quadrature signals generated. This function is actually done external to the encoder by a counter or controller. Another method to increase resolution is interpolation or internal electronic subdivision of the encoder's base resolution. Typical multiplication factors obtained by interpolation are in the 2-20X range. Quadrature and interpolative methods can also be combined to further multiply the basic encoder resolution, but practical limits must be observed. An extremely high output of pulses could overwhelm the bandwidth of the control system.

Electronic interfaces are important if the encoder is to work properly with external controls. Two common types of output interfaces-open-collector and differential line driver-are discussed in the main article. In addition, the robustness of the output signals must be assured through electrical isolation. Auxiliary products exist for this purpose. For an example of a new optical isolator module specifically for incremental encoders, see the July 2000 issue's product section .

Encoder varieties, features, options

Rotary encoders are made in a variety of styles. Size range runs the gamut from miniature units that cater to tight space requirements crucial in many applications to large, heavy-duty models that resemble sizable electric motors. It's even possible to transmit power through some heavy-duty encoders that have a dual-shaft extension feature. Kit-type encoders come with all the parts needed, except a housing; the motor or machine structure into which the parts are assembled provides the housing.

In an unusual configuration, a ring-shaped encoder wraps a precision linear scale into a circular form for convenient compact mounting. The unit is combined with a miniature read head. (See product examples below. )

Encoders must contend with the harsh conditions of the applications they serve. These include high temperature, moisture, and vibration, along with EMI and related adverse electromagnetic effects. Temperature tolerance of some encoders is surprisingly high. Models are available for continuous operation up to 105 °C (221 °F). Capability to work up to 125 °C (257 °F) is said to be under development. However, more typical for industrial usage is the 70-85 °C range. At the low-temperature end, 0 to -10 °C is typical capability.

Proper sealing is likewise important. NEMA 4 (IP65) is typical for industrial usage, however, NEMA 4X, 6, or even 13 is available. Encoders can also be designed to be intrinsically safe and explosion proof.

Rotational speed capability of the encoder must match that of the motor being monitored. In most cases this requirement is met, with encoders available up to 30,000 rpm operation. Of course, such high speeds carry stringent bearing and mounting design requirements. Precision rolling-element bearings must be used.

In recent years, the hollow-shaft housing version has been added by virtually all encoder manufacturers. This design opens the encoder's centerline to direct access by electric, hydraulic, pneumatic, or other process lines, simplifying the motion system installation and making it more compact. Depending on the encoder model, the hollow-shaft opening can be quite large. This allows convenient direct mounting to larger diameter motor shafts.

Other mounting methods include shaft-to-shaft connection to the motor (or rotary load) via a coupling, mounting to the stator, bracket mounting, and tether mounting. Standard electrical connections from the encoder to the motor include cable, pin-style connector, terminal block, etc.

A brief sampling of products follows to illustrate the rich variety of rotary encoders available.


Rotary ring encoder
Schaumburg, Ill .-RGR Rotary Ring Encoders wrap linear optical encoder technology into a circular form for 360° rotary capability. A 20-ncremental output. The rings come with a precounted number of lines; repeatable reference marks are optional. RGR ring encoders operate at speeds of more than 2,000 rpm, with resolutions said to be down to 0.2 arc sec. Renishaw Inc.




`Smallest' high-resolution encoder
Troy, N.Y .- R119 encoder, measuring just 0.75 diameter x 0.9-in. long, is available in a conventional shaft-mount and blind, hollow-shaft version with flexible tether mount. The 'thumb-sized' optical encoder generates quadrature square waves at up to 10,240 cycles per revolution (40,960 counts/rev after the user's 4X quadrature decode). A Gurley Precision Instruments



Modular encoders
Schaumburg, Ill .-ERO 1200 and 1400 Series modular rotary encoders consist of a disk/hub assembly-mountable to the measured shaft-and a scanning unit that is attached to it. These encoders feature several popular electronic interfaces used for TTL signals. A 1-V pp interface, which outputs signals that allow higher interpolation, is also available for fine measurement steps needed in speed control. ERO Series comes with 4-12 mm shaft diameters and various line counts and speed capabilities. Heidenhain Corp.






Comments? E-mail fbartos@cahners.com





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.