Self-Tuning Controllers Auto-Select P, I, D Values

09/01/1997


Tuning a PID controller is conceptually simple--observe the behavior of the controlled process and fine tune the controller's proportional (P), integral (I), and derivative (D) parameters until the closed-loop system performs as desired. However, PID tuning is often more of an art than a science. The best choice of tuning parameters depends upon a variety of factors including the dynamic behavior of the controlled process, the controller's objectives, and the operator's understanding of the tuning procedures.

Self-tuning PID controllers simplify matters by executing the necessary tuning procedures automatically. Most observe the process' reaction to a disturbance and set their tuning parameters accordingly. However, no two go about accomplishing those tasks in the same way.

'Heuristic' self-tuners, for example, attempt to duplicate the decision-making process of an experienced operator. They adjust their tuning parameters according to a series of expert tuning rules such as 'IF the controller overreacts to an abrupt disturbance THEN lower the derivative parameter.'

Model-based approach
A more common approach to automatic parameter selection, however, involves a mathematical 'model' of the process--an equation that relates the present value of the process output to a history of previous outputs and previous inputs applied by the controller. If the model is accurate, the controller can predict the future effect of its present efforts and tune itself accordingly.

For example, a process that reacts sluggishly to a step input can be modeled with an equation that gives the current output as a weighted sum of the most recent output and the most recent input. A self-tuner can choose the weights in that sum to fit the model to the observed process behavior. With the model in hand, the self-tuner can go on to determine how much proportional, integral, and derivative action the process can tolerate. In the case of a sluggish process, the model will show that the controller is free to apply aggressive control efforts. The self-tuner will then set the P, I, and D parameters to relatively high values.

Variations on the theme
Exactly how high or low the tuning parameters should be set depends on the performance objectives specified by the operator. If, for example, the settling time is to be limited to some maximum value, the required tuning parameters can be determined by analyzing the time constant and the deadtime of the process model. On the other hand, if excessive overshoot is the operator's principal concern, the controller can be configured to select tuning parameters that will limit the rate of change of the process variable.

Self-tuning controllers also differ in their data collection techniques. Some apply a series of artificial disturbances to the process in order to observe how it behaves. Others make do with data collected during normal loop operations. The latter approach limits the waste and inconvenience caused by intentionally disturbing the process, but generally produces much less useful information about the process' behavior.

Which of these many variations is appropriate for a given application of self-tuning control is up to the operator. A single universally applicable technique has yet to be developed.





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Save energy with automation; Process control system upgrades; Dispelling controll myths; Time-sensitive networking; Control system integration; Road to IANA
Additive manufacturing advancements; Machine vision enhances robotics; Fieldbus evolution; Process safety; Advice from System Integrators of the Year; Road to IANA
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
click me