Semi-autonomous welding robot will repair New York's steam pipes

New York City's streets are well known—often unfairly—as dangerous places, but the city's legendary 103-mile, 110-year-old grid of underground steam pipes is far more hazardous. To fix frequent leaks in the 16-45-in. mains that move 300 °F steam at 100 mph to heat, power, and help cool about 2,000 buildings, crews must excavate and make repairs directly, compounding the c...

09/01/2001


New York City's streets are well known—often unfairly—as dangerous places, but the city's legendary 103-mile, 110-year-old grid of underground steam pipes is far more hazardous. To fix frequent leaks in the 16-45-in. mains that move 300 °F steam at 100 mph to heat, power, and help cool about 2,000 buildings, crews must excavate and make repairs directly, compounding the city's even more frequent traffic jams.

To help Consolidated Edison repair these mains less invasively, Honeybee Robotics Ltd. (New York, N.Y.) is building a semi-autonomous robot to inspect joints, mill new grooves, and re-weld pipe flanges from inside those same pipes.

Honeybee's 8-ft, 700-pound Welding and Steam Operations Robot (WISOR) has a milling section in front, with a 360°, 6-in. extendable milling tool, and a welding section in back. These are connected by U-joints to a center indexing system that cooperates with WISOR's retractable legs to inchworm the robot along inside the pipe.

After identifying a broken pipe joint with its four on-board cameras, WISOR locks up, cuts a clean groove, retracts, moves ahead, locks up again, and lays down a new weld in the groove. At an approximate rate of four 16-in welds in six hours, WISOR's repairs are expected to cost far less than the $35,000 the utility now spends per excavated repair.

Control at a distance

WISOR is operated via a 200-ft umbilical that delivers control signals, power, compressed air, and shielded gases from its truck-mounted control and support unit. Repair data are also transmitted to WISOR's operator at a human-machine interface above ground. Before starting a repair, the robot also self-diagnoses to learn if its compressor is on, confirms the pipe's diameter, and seeks other required data.

Honeybee used copper cable for WISOR's communication line because it required less hardware than fiber-optic, was more reliable in hot environments, and didn't require a signal converter.

Communication and control integration included tuning, debugging, and noise level testing of signal channels on WISOR's slip ring. Its cables were also checked for any signs of failure. Noise on the video signal occurred when the motors experienced load due to a common power and signal ground. Twisted-pair cable reduced noise interference.

The backbone of WISOR's control capabilities is a Local Intelligent Network Controller from Cybernetic Micro Systems (San Gregorio, Calif.). Because of tight space for on-board electronics, the controller was limited to basic functions. For example, the motor controller's loop wasn't closed because the operator above ground could fulfill that function manually using video images from the robot.

In addition, due to vibrations experienced by WISOR's circuit boards as it navigates, Honeybee's engineers decided against surface mounting the controller, and chose through-hole mounting for all the controller's electrical components.

So far, two-thirds of the robot have been delivered to Con Ed, and street trials are expected to begin in September 2001. In the future, Honeybee's engineers plan to increase the speed of WISOR's computers and increase its memory capacity, so it can operate more autonomously.

For more information, for Honeybee Robotics or visit www.hbrobotics.com .


Author Information

Jim Montague, news editor jmontague@cahners.com




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
Selecting the best controller from several viewpoints; System integrator advice for the IIoT; TSN and real-time Ethernet; Questions to ask when selecting a VFD; Action items for an aging PLC/DCS
Robot advances in connectivity, collaboration, and programming; Advanced process control; Industrial wireless developments; Multiplatform system integration
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
click me