Sensors, controls improve beer: Less oxygen, better beer

Oxygen in beer reduces shelf life and can affect flavor. Advanced optical measurement and sensor diagnostic technologies minimizes oxygen, simply and dependably.

12/12/2011


Oxygen in the brewing process is monitored because of its importance on the quality, taste and shelf life of the beer. After fermentation, beer is close to being oxygen free and maintaining this very low oxygen level is important for quality assurance. Therefore O2 uptake during the following separation, filtration, storage and filling processes has to be minimized. To reduce the risk of contamination, permanent and precise oxygen monitoring is required.

The InPro6970i has reduced signal drift and faster response time compared to amperometric sensors guarantees maximum accuracy of the oxygen measurement and allow for enhanced process control. Courtesy: Mettler ToledoContinuous measuring of oxygen concentration places high demands on an in-line O2 system. Such equipment must be easy to install and operate, require minimal maintenance and, most importantly, always measure accurately.

Intelligent optical sensor

The InPro 6970i from Mettler-Toledo delivers at low oxygen levels down to 2 ppb. Based on fluorescence quenching technology, it combines high measurement performance with Intelligent Sensor Management (ISM) functionality.

Optical oxygen sensors offer many advantages over amperometric sensors; reduced and easier maintenance, and long term stability resulting in reduced cost of ownership being only two of them. The only consumable, the OptoCap, has a significantly longer lifetime then amperometric membrane bodies and can easily be replaced within a few minutes. No polarization or liquid handling is necessary. Once the sensor is calibrated it is ready to use.

ISM technology adds to these advantages by simplifying maintenance planning and documentation of all sensor data. Using advanced diagnostic tools, the quality of the sensing element and all sensor components are permanently monitored. Early signs of sensor aging or failure are immediately displayed to the user.

With Plug and Measure, the sensor can be connected to an M400 transmitter, and all data, including calibration and information about the sensor history, e.g. the stresses that the sensor has been exposed to, the number of CIP cycles and much more, are transferred to the transmitter. The system becomes ready for use within a few seconds and no complicated configuration or failure prone calibration at the point of use is required.

http://www.mt.com/InPro6970i

http://www.mt.com/InPro6970i 

www.mt.com/ISM 

Mettler Toledo

- Edited by Chris Vavra, Control Engineering, www.controleng.com 

For other Control Engineering fermentation articles, see below.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.