Silly Putty material inspires better batteries

Engineers use silicon dioxide to make lithium-ion batteries that last three times longer between charges compared to current standard.


From left, Cengiz Ozkan, Hamed Hosseinni Bay, Mihrimah Ozkan, Zachary Favors and Aaron George in the Ozkans's lab. Courtesy: University of California, RiversideUsing a material found in Silly Putty and surgical tubing, a group of researchers at the University of California, Riverside Bourns College of Engineering have developed a new way to make lithium-ion batteries that will last three times longer between charges compared to the current industry standard.

The team created silicon dioxide (SiO2) nanotube anodes for lithium-ion batteries and found they had over three times as much energy storage capacity as the carbon-based anodes currently being used. This has significant implications for industries including electronics and electric vehicles, which are always trying to squeeze longer discharges out of batteries.

"We are taking the same material used in kids' toys and medical devices and even fast food and using it to create next generation battery materials," said Zachary Favors, the lead author of a just-published paper on the research.

The paper, "Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries," was published online in the journal Nature Scientific Reports.

It was co-authored by Cengiz S. Ozkan, a mechanical engineering professor, Mihrimah Ozkan, an electrical engineering professor, and several of their current and former graduate students: Wei Wang, Hamed Hosseinni Bay, Aaron George and Favors.

Silicon polymer and battery used for the research. Courtesy: University of California, RiversideThe team originally focused on silicon dioxide because it is an extremely abundant compound, environmentally friendly, non-toxic, and found in many other products.

Silicon dioxide has previously been used as an anode material in lithium ion batteries, but the ability to synthesize the material into highly uniform exotic nanostructures with high energy density and long cycle life has been limited.

Their key finding was that the silicon dioxide nanotubes are extremely stable in batteries, which is important because it means a longer lifespan. Specifically, SiO2 nanotube anodes were cycled 100 times without any loss in energy storage capability and the authors are highly confident that they could be cycled hundreds more times.

The researchers are now focused on developed methods to scale up production of the SiO2 nanotubes in hopes they could become a commercially viable product.

The research is supported by Temiz Energy Technologies. 

Bourns College of Engineering 

- Edited by CFE Media. See more Control Engineering energy and power stories.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security