Simple solutions can prevent premature damage

Most motor failures stem from damaged bearings or stator windings. Lack of lubrication, over lubrication, misalignment and bearing (shaft) currents often dramatically shorten bearing life. The culprits responsible for premature failure of stator windings include mechanical or thermal overload, poor ventilation and transient voltages from variable-frequency drives.

10/01/2009


Most motor failures stem from damaged bearings or stator windings. Lack of lubrication, over lubrication, misalignment and bearing (shaft) currents often dramatically shorten bearing life. The culprits responsible for premature failure of stator windings include mechanical or thermal overload, poor ventilation and transient voltages from variable-frequency drives. Fortunately, most premature motor failures can be prevented using straightforward solutions to protect bearings and stator windings.

 

Bearing failures

Bearings are small compared to other major motor components, making them particularly vulnerable to damage and wear. More than half of all motor failures are due to bearing failures, most of which result from too little or too much lubrication. The key to avoiding these conditions is to establish a lubrication program using bearing and motor manufacturer guidelines to determine the frequency and amount of lubrication for the motor application, duty, environmental conditions and bearing size.

 

Another significant cause of bearing failure is misalignment, the effect of which increases by the cube of the change. An alignment value that is twice the new installation tolerance will reduce bearing life by a factor of eight. The solution is simple: align the motor and driven equipment to new installation tolerances, or better.

 

Bearing currents are typically caused by dissymmetry in the motor frame or powering the motor from a VFD. Decades ago, bearing currents were only an issue on very large motors due to their inherent lack of magnetic symmetry. VFDs subject these motors to a chopped output waveform. The resulting magnetic dissymmetry produces a current path from stator frame to shaft, and through the bearings at each end.

 

Although no solution to bearing currents exists, some remedial measures are available. Among the most common of these are insulated bearing housings, ceramic rolling element bearings and shaft-grounding brushes. Other methods include insulating the shaft bearing journal, installing completely ceramic bearings and using conductive grease. Applying filters or reactors to the VFD also helps by reducing the magnitude of the bearing current.

 

Winding failures

 

Stator winding failures run a distant second to bearings as a cause of motor failures. Yet the extent of damage, repair cost and downtime from a winding failure is often much greater than for bearing failures.

 

Mechanical overload is the leading cause of stator winding failure. Operating a motor at 15% above rated load (equal to the 1.15 service factor of many motors) can reduce winding thermal life to 25% of normal. A common misunderstanding is that motors can be loaded to their service factor continuously. Actually, service factor capability is intended for short-term, intermittent use only. The solution to mechanical overload is to reduce the load to no more than the motor’s power rating.

 

Thermal overload is caused by overvoltage, under voltage and unbalanced voltages. A variation in voltage of more than 10% from rated or a voltage unbalance greater than 1% from the average results in excessive winding heating. The solution is to bring the voltages at the motor to within tolerance. This may require special transformers or adjusting the load on each phase.

 

Motors require both internal and external airflow to extract heat from windings. Accumulation of contaminants on the stator windings or externally on the frame and the fan cover inhibits airflow. Damaged or missing fans reduce cooling air flow. The solution is to repair or replace damaged or missing fans and to clean the motor. If it’s an open enclosure motor in a dirty environment, replace it with a TEFC model. It’s easier and faster to remove dirt from the exterior of a TEFC motor than from the inside of an open enclosure motor.

 

Transient voltages reach magnitudes of many times line voltage within microseconds. The ideal solution for transients is to prevent them from occurring. The practical solution is to install transient voltage protection in the motor terminal box. The only true solution for repetitive transients from VFDs is a VFD output without transient voltages. Until that becomes available, common preventive measures include installing filters or line reactors and inverter-duty motor windings.

 

Fluting of the bearing can be caused by shaft current due to use with a VFD.

 

 

Author Information

Thomas H. Bishop, P.E. is a technical support specialist at the Electrical Apparatus Service Association (EASA) in St. Louis, MO. He can be reached at (314) 993-2220. EASA (

 



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.