Simulating daylighting

Glumac implemented daylighting control to achieve energy savings for their Portland headquarters.


At the Glumac headquarters in Portland, Ore., designers implemented daylighting control to achieve energy savings by lowering lighting energy use typical to the existing office layout. The result: Actual lighting power density (LPD) measured less than 0.3 W/sq ft. By exposing the ceiling and replacing a closed upper/spandrel area with SolarBan 70 XL glazing, daylight penetration into the space increased by an average of 12 ft. With this increased daylight, the risk of glare also increased.

Table 1 shows the total building system effects from lighting modeling and luminaire reduction towards payback analysis. Courtesy: Glumac

However, the existing building has 18-in. deep external columns located 5 ft on center around the entire perimeter, which effectively act as vertical external shades and provide glare control at various times of the day. The surface of the columns is exposed aggregate concrete, with white aggregate and cement. Although the material is light in color, its rough texture casts shadows over much of the surface, which limits the glare potential. To further enhance this lighting benefit, motorized window shades are provided, automatically controlled to raise and lower as needed to eliminate glare in early morning and late afternoon time periods.

The daylighting was simulated using the Radiance plug-in for Autodesk Ecotect. Radiance calculates a single point in time light level in LUX. To calculate the lighting power reduction for the simulation, it was assumed that if the daylight level was greater than 430 LUX, then the lights would be turned off. If the daylight level was less than 430 LUX, the remaining percentage of the light would be supplied by the office lighting. The lighting power reductions due to daylighting were calculated for the affected perimeter and open office spaces at 9 a.m., 12 p.m., and 3 p.m. for the 15th day of each month.

To simulate the effect of daylighting using the Department of Energy’s eQUEST energy modeling program, the baseline hourly lighting schedule for the affected spaces was reduced by the calculated percentage of light available from daylighting as calculated using Radiance. Between the points calculated using Radiance, the available daylight reduction was calculated as a percentage of the two points. Weekday and weekend schedules were created for the east and west sides of the building for the open office and circulation areas. Annual schedules were created that switched the reduced lighting power schedules on a monthly basis. These revised lighting schedules were used in the proposed design simulation.

The baseline model simulation has daylighting allowing the installed lighting levels to be reduced by 50%. As a result, credit has been taken only in the proposed model simulation for the installed system’s ability to reduce lighting levels beyond 50% and turn lights off when sufficient light is available. 

David B. Duthu is board principal at ccrd, where he has more than 37 years of experience in the fields of mechanical engineering design, technical engineering design, and project management. Nolan Rome is associate principal and lead mechanical engineer for ccrd and has been responsible for the design of all types of healthcare facilities including hospital expansions, cancer centers, and imaging centers in multiple states.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security