Squishy robots

Phase-changing material could allow even low-cost robots to switch between hard and soft states.

07/28/2014


Figure 1: Two 3D-printed soft, flexible scaffolds: The one on the left is maintained in a rigid, bent position via a cooled, rigid wax coating, while the one on the right is uncoated and remains compliant (here, it collapses under a wrench). Courtesy: Anette Hosoi, Nadia Cheng, MITIn the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed.

Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

The material — developed by Anette Hosoi, a professor of mechanical engineering and applied mathematics at MIT, and her former graduate student Nadia Cheng, alongside researchers at the Max Planck Institute for Dynamics and Self-Organization and Stony Brook University — could be used to build deformable surgical robots. The robots could move through the body to reach a particular point without damaging any of the organs or vessels along the way.

Robots built from the material, which is described in a new paper in the journal Macromolecular Materials and Engineering, could also be used in search-and-rescue operations to squeeze through rubble looking for survivors, Hosoi said.

Follow that octopus

Working with robotics company Boston Dynamics, based in Waltham, Mass., the researchers began developing the material as part of the Chemical Robots program of the Defense Advanced Research Projects Agency (DARPA). The agency was interested in “squishy” robots capable of squeezing through tight spaces and then expanding again to move around a given area, Hosoi says — much as octopuses do. But if a robot is going to perform meaningful tasks, it needs to be able to exert a reasonable amount of force on its surroundings, she said. “You can’t just create a bowl of Jell-O, because if the Jell-O has to manipulate an object, it would simply deform without applying significant pressure to the thing it was trying to move.”

Figure 2: A 3D-printed soft, flexible scaffold that is coated in wax and is being compressed in a temperature-controlled chamber. Heating a composite whose wax coating has broken can enable the wax to soften and heal to restore its original strength and pWhat’s more, controlling a very soft structure is extremely difficult: It is much harder to predict how the material will move, and what shapes it will form, than it is with a rigid robot.

So the researchers decided that the only way to build a deformable robot would be to develop a material that can switch between a soft and hard state, Hosoi said. “If you’re trying to squeeze under a door, for example, you should opt for a soft state, but if you want to pick up a hammer or open a window, you need at least part of the machine to be rigid,” she said.

Compressible and self-healing

To build a material capable of shifting between squishy and rigid states, the researchers coated a foam structure in wax. They chose foam because it can be squeezed into a small fraction of its normal size, but once released will bounce back to its original shape.

The wax coating, meanwhile, can change from a hard outer shell to a soft, pliable surface with moderate heating. This could be done by running a wire along each of the coated foam struts and then applying a current to heat up and melt the surrounding wax. Turning off the current again would allow the material to cool down and return to its rigid state.

Figure 3: A 3D-printed soft, flexible scaffold that can exhibit shape memory properties (like soft foam) after being compressed. Courtesy: Anette Hosoi, Nadia Cheng, MITIn addition to switching the material to its soft state, heating the wax in this way would also repair any damage sustained, Hosoi said. “This material is self-healing,” she said. “So if you push it too far and fracture the coating, you can heat it and then cool it, and the structure returns to its original configuration.”

To build the material, the researchers simply placed the polyurethane foam in a bath of melted wax. They then squeezed the foam to encourage it to soak up the wax, Cheng said. “A lot of materials innovation can be very expensive, but in this case you could just buy really low-cost polyurethane foam and some wax from a craft store,” she said.

In order to study the properties of the material in more detail, they then used a 3-D printer to build a second version of the foam lattice structure, to allow them to carefully control the position of each of the struts and pores.

When they tested the two materials, they found that the printed lattice was more amenable to analysis than the polyurethane foam, although the latter would still be fine for low-cost applications, Hosoi said.

The wax coating could also be replaced by a stronger material, such as solder, she adds.

Hosoi is now investigating the use of other unconventional materials for robotics, such as magnetorheological and electrorheological fluids. These materials consist of a liquid with particles suspended inside, and can be made to switch from a soft to a rigid state with the application of a magnetic or electric field.

Massachusetts Institute of Technology (MIT)

www.mit.edu 

- Edited by CFE Media. See more Control Engineering robotics stories.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Save energy with automation; Process control system upgrades; Dispelling controll myths; Time-sensitive networking; Control system integration; Road to IANA
Additive manufacturing advancements; Machine vision enhances robotics; Fieldbus evolution; Process safety; Advice from System Integrators of the Year; Road to IANA
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
click me