Synthetic molecular oscillator could serve as a timer to control artificial cells

Researchers have made important discoveries regarding the behavior of a synthetic molecular oscillator, which could help create artificial cells.

02/20/2014


Micron-sized droplets of an emulsion form the reaction vessels for a complex, oscillating reaction. Courtesy: Bourns College of EngineeringA University of California, Riverside assistant professor of engineering is among a group of researchers that have made important discoveries regarding the behavior of a synthetic molecular oscillator, which could serve as a timekeeping device to control artificial cells.

Elisa Franco, an assistant professor of mechanical engineering at UC Riverside's Bourns College of Engineering, and the other researchers developed methods to screen thousands of copies of this oscillator using small droplets. They found, surprisingly, that the oscillators inside these small droplets behave in a very diverse way in terms of period, amplitude and phase.

"This diversity will play an important role in engineering complex behaviors in artificial cells, and we will take advantage of it," Franco said.

The paper, "Diversity in the dynamical behavior of a compartmentalized programmable biochemical oscillator," was published online this week in the journal Nature Chemistry. Co-authors were: Maximilian Weitz, Korbinian Kapsner and Friedrich C. Simmel, all of the Technische Universit√§t M√ľnchen in Germany and Jongmin Kim and Erik Winfree, both of the California Institute of Technology.

Electronic oscillators are circuits that produce a periodic electronic signal, and they are used to regulate a variety of devices from radio and television transmitters to cellphones and computers. Biological systems are also regulated by complex molecular oscillators, from the level of individual cells up to entire organisms.

For decades, scientists have been trying to figure out ways to make artificial, programmable oscillators with molecules. Artificial oscillators may help adjust timekeeping in cells and regulating artificial cells. They could also be used as components in molecular computers that could create a middle ground between computers and nature.

Franco and the other researchers worked with a minimalistic artificial clock made with a soup-like mixture of DNA, RNA and proteins. An oil mixture was added to the oscillator mixture, and shaken to create an emulsion with thousands of water-in-oil droplets. Each droplet contained a copy of the oscillator mixture. Franco compared this simple emulsion preparation procedure to creating a salad dressing with oil and vinegar.

While emulsions are a common laboratory technique used to generate many small samples and run thousands of experiments in parallel, not many studies have looked at dynamic circuits like oscillators.

In the experiments outlined in the Nature Chemistry paper, the "blinking" droplets containing the oscillator were studied under a microscope, where the diverse behavior of amplitude and frequency was observed.

Through mathematical modeling, the researchers were able to attribute this diversity to uneven distribution of molecules inside each droplet, a phenomenon called "partitioning noise." This variability is a major challenge as well as an opportunity for the development of artificial cells. Similar experiments will allow scientists to optimize artificial molecular devices so they are minimally affected by partitioning noise.

Funding for Franco's research comes from the National Science Foundation, Bourns College of Engineering at UC Riverside and the UC Regents Faculty Development Fellowship.

Bourns College of Engineering

www.engr.ucr.edu 

- Edited by CFE Media. See more Control Engineering sensor and vision stories.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
9 tips: How to integrate a servo system; Process control mathematical models; Serial network grounding; Engineers' Choice Awards; Learn from cyber security mistakes
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
click me