Technology Bites Back

When Washington Irving's Rip Van Winkle awoke from his 20-year nap, he found himself in a new country. When computer users wake up on Jan. 1, 2000, they may find themselves in the old century.Year 2000 poses a myriad of problems for computers and software applications that only recognize two-digit date codes (e.


When Washington Irving's Rip Van Winkle awoke from his 20-year nap, he found himself in a new country. When computer users wake up on Jan. 1, 2000, they may find themselves in the old century.

Year 2000 poses a myriad of problems for computers and software applications that only recognize two-digit date codes (e.g "98'' for "1998''). The year 2000, read as "00," may be interpreted as the year 1900.

Automation systems use computer technology and so are subject to the same Year 2000 bugs as IT systems. What might happen if the problems are not addressed? Computers may stall, data may be lost, process views may be corrupted, and plant shutdowns could occur.

This issue's cover stories detail the Year 2000 impact on automation systems and outline a four-stage process to make your plant Year 2000 compliant.

Managing expectations

The Year 2000 dilemma is one instance of technology biting back. We've become so reliant on computer technology that we often forget—it's only as good as it's programmed. As the old caveat goes: Garbage in, garbage out.

If computers were the breakthrough technology of the 1960s, the Internet is the breakthrough technology of the 1990s. Just as in the early days of computer-controlled plants, we need to manage expectations in applying the Internet to automation.

This issue's article, "Operator Interface Software Opens a Window on the World Wide Web," cites many fine benefits of web-enabled automation software. For instance, remote users with web browsers can monitor plants thousands of miles away. Costs for wiring, implementation, and maintenance should decrease by employing rich Internet development tools. And, since everyone knows how to use the Internet, training costs and learning curves decrease.

What could go wrong? Well, look no further than a security breach or network failure during critical data flow. The lessons we've learned in applying other commercial technologies should be remembered here as well.

First, security is everything. If web-connected users have read and write access (in other words, they can send control commands over the Internet to the server), then you must build security clearance and firewalls into the application.

Second, calculate network performance to ensure critical control responsiveness. Some good advice from Andy Swales, system architect for Schneider Automation: "Precalculate the worst-case loading on each of the segments and place blocking devices to reduce the rate of message interference from the outside. If absolute control of worst-case response time is important, choose repetitive cyclic transmission of information rather than event-driven transmission."

And finally, remember that in real life, electronics fail. Again, from Mr. Swales, "Moving the web pages from the client to the server reduces the number of critical devices, but you still must have a plan if the server itself fails."

Here are two suggestions: One, embed functionality into the automation equipment itself. Automation vendors have tried-and-true techniques to handle equipment failures. Two, centralize information on plant servers and use conventional techniques to duplicate and mirror these servers. All other plant display devices can be thin clients refreshed from the central database.

Let's apply the Internet, and its development environment, wisely to automation applications. After all, we have enough on our mind worrying about Year 2000.

Author Information

Jane S. Gerold, Editorial Director

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me