Technology Bites Back

When Washington Irving's Rip Van Winkle awoke from his 20-year nap, he found himself in a new country. When computer users wake up on Jan. 1, 2000, they may find themselves in the old century.Year 2000 poses a myriad of problems for computers and software applications that only recognize two-digit date codes (e.

02/01/1998


When Washington Irving's Rip Van Winkle awoke from his 20-year nap, he found himself in a new country. When computer users wake up on Jan. 1, 2000, they may find themselves in the old century.

Year 2000 poses a myriad of problems for computers and software applications that only recognize two-digit date codes (e.g "98'' for "1998''). The year 2000, read as "00," may be interpreted as the year 1900.

Automation systems use computer technology and so are subject to the same Year 2000 bugs as IT systems. What might happen if the problems are not addressed? Computers may stall, data may be lost, process views may be corrupted, and plant shutdowns could occur.

This issue's cover stories detail the Year 2000 impact on automation systems and outline a four-stage process to make your plant Year 2000 compliant.

Managing expectations

The Year 2000 dilemma is one instance of technology biting back. We've become so reliant on computer technology that we often forget—it's only as good as it's programmed. As the old caveat goes: Garbage in, garbage out.

If computers were the breakthrough technology of the 1960s, the Internet is the breakthrough technology of the 1990s. Just as in the early days of computer-controlled plants, we need to manage expectations in applying the Internet to automation.

This issue's article, "Operator Interface Software Opens a Window on the World Wide Web," cites many fine benefits of web-enabled automation software. For instance, remote users with web browsers can monitor plants thousands of miles away. Costs for wiring, implementation, and maintenance should decrease by employing rich Internet development tools. And, since everyone knows how to use the Internet, training costs and learning curves decrease.

What could go wrong? Well, look no further than a security breach or network failure during critical data flow. The lessons we've learned in applying other commercial technologies should be remembered here as well.

First, security is everything. If web-connected users have read and write access (in other words, they can send control commands over the Internet to the server), then you must build security clearance and firewalls into the application.

Second, calculate network performance to ensure critical control responsiveness. Some good advice from Andy Swales, system architect for Schneider Automation: "Precalculate the worst-case loading on each of the segments and place blocking devices to reduce the rate of message interference from the outside. If absolute control of worst-case response time is important, choose repetitive cyclic transmission of information rather than event-driven transmission."

And finally, remember that in real life, electronics fail. Again, from Mr. Swales, "Moving the web pages from the client to the server reduces the number of critical devices, but you still must have a plan if the server itself fails."

Here are two suggestions: One, embed functionality into the automation equipment itself. Automation vendors have tried-and-true techniques to handle equipment failures. Two, centralize information on plant servers and use conventional techniques to duplicate and mirror these servers. All other plant display devices can be thin clients refreshed from the central database.

Let's apply the Internet, and its development environment, wisely to automation applications. After all, we have enough on our mind worrying about Year 2000.


Author Information

Jane S. Gerold, Editorial Director jgerold@cahners.com




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.