Technology update: Alternative power sources for instrumentation

Energy scavenging or harvesting methods are becoming more mainstream for low-power instrumentation. Can you use them? At Sensors Expo 2009, energy harvesting took the limelight, using vibration, light, heat, or even radio frequency. Batteries and power management remain important.

06/17/2009


Each year at the Sensors Expo, some technology seems to take the limelight. In recent years it’s been wireless, but in 2009 it was energy harvesting. You probably know what this is about if you have been considering adding wireless instrumentation to your plant. Devices that have no wires to carry data probably have no wires to carry power either, so they depend on self-contained sources. The number of options is growing.

Batteries are an obvious choice, and in many situations they still represent a simple low-cost solution with a proven track record. Non-recharging lithium thionyl chloride battery chemistries can operate for 5, 10, or even 20 years when sized appropriately for the application. Companies such as Tadiran and Xeno Energy offer wide selections of industrial batteries using this long-life technology.

Read more on understanding .

Read more on instrumentation powering options .

Even if batteries will last until after you retire, they do go dead eventually. So some users want other technologies to capture the energy available in typical plant environments. Some energy sources are natural, like wind and sun. Others depend on working equipment, like heat, vibration, and even radio waves. Energy harvesting technologies, such as wind and photovoltaic cells, are available in large versions of course. But, for this discussion, we’re talking about very small amounts of power, typically on the order of a few milliwatts, and in some cases, microwatts.

Vibration driven sensors are becoming more common and are available from companies like AdaptivEnergy , Perpetuum , Cerametrics , Cymbet , and KCF Technologies . This is a growing field that includes multiple sub-technologies. Some generators need to operate at a specific vibration frequency, such as 50 or 60 Hz. Others can operate at any frequency. Since output depends on specific conditions, this approach will likely require experimentation. One appealing element of vibration is that it is a continuous supply, as long as the source device is running.

Tiny wind turbines can also deliver power, but like their larger counterparts, they only work when the wind is blowing. Most of these small units need very little wind to operate, but they will probably need protection from the elements. Cymbet and KCF Technologies both offer units.


Cymbet EnerChip EH Solar Energy Harvesting module is the heart of the new Texas Instruments eZ430-RF2500-SEH Wireless Demo Kit. This kit is the world's first complete autonomous Energy Harvesting wireless sensor development tool, Cymbet says.

Photovoltaic cells are made in all shapes and sizes, including tiny units that are around 1 sq. in. These don’t always need to be in direct sunlight but can operate off of artificial sources as well. Given the variety of options, you can get just about any combination of voltage and current you need. Cymbet and KCF Technologies both offer miniature photovoltaic units.

Heat energy scavenging is still developing, but there were units shown by Cymbet and KCF Technologies . One of the difficulties with this approach is creating a large enough temperature differential within the device to be effective. KCF’s unit has a small fan to help dissipate heat, so the generator has to power that as well as the driven device.

Powercast is sending power to devices via RF transmissions, allowing the sensor to collect energy through an antenna. (The company has managed to capture energy from ambient cell phone transmissions, but this typically isn’t enough to be useful.) One 3-watt transmitter can send power to a number of devices, although the distance is limited. The greater the distance, the more the usable wattage falls off. This can be improved using directional antennas, but only so far.

All of these technologies can generate power, but their usefulness depends on careful energy management. The companies listed have all developed hardware and protocols to manage power as well as collect it. This is especially important for those methods that are intermittent by nature. Well-thought-out systems typically incorporate some storage mechanism using capacitors or batteries to accumulate unused power and release it when there is a spike in demand. Another method uses a traditional battery as a backup for interruptions in the primary source.

One mechanism for energy storage is new thin-film batteries that use lithium ion technology. Infinite Power Solutions showed a range, with sizes varying from smaller than postage stamps to half of a business card. A typical unit 1 in. square and 7 mils thick can put out 4 V with 0.5 to 1.0 mAh.

These methods combined with very energy-stingy devices makes for high efficiency and deployment flexibility. Still, there is little in the way of standardization, so expect that you’ll have to do some experimentation.

Also see: Sensors Expo photo gallery: Olympic torch, power harvesting , wireless demo.

—Peter Welander, process industries editor, PWelander@cfemedia.com ,
Control Engineering Process Instrumentation & Sensors Monthly
Register here to select your choice of free eNewsletters .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.