Test center for low-energy buildings

A user test site at Lawrence Berkeley National Laboratory allows researchers and manufacturers to test various energy efficient building systems and components in real-world conditions.


All types of snazzy technologies are available these days to make buildings greener: automated shades, electrochromic windows that know when to tint, intelligent lighting controls and smart cooling and heating systems, to name just a few. But how do these components work with each other and with building occupants? What happens when more than one technology is installed in a building? Do the current generation of building energy simulation programs provide accurate predictors of actual energy performance? Unfortunately, these questions are rarely answered since field-testing of integrated building technologies has not been a focus of the building industry.

Enter the new User Test Bed Facility at the Dept. of Energy’s Lawrence Berkeley National Laboratory. Like a giant, life-size set of building blocks, the Facility will allow researchers and manufacturers to test buildings systems and components under “real-world” conditions by swapping out systems and changing configurations and then allow rigorous monitoring of performance of every key building element that impacts energy consumption.

“One can think of these test beds as kind of an erector set. They’re designed with extreme flexibility in mind,” said Berkeley Lab engineer Oren Schetrit, a program manager for the Test Bed Facility. “You’ll be able to change out the walls, windows, lighting, HVAC system, external or internal shading, and the configuration of the internal office systems. You can also lower or raise the ceiling height and floor height.”

An architect's rendering of an aerial view of the User Test Bed Facility, with the existing Building 90 behind it. (Source: Stantec Architecture)

An architect's rendering of an aerial view of the User Test Bed Facility, with the existing Building 90 behind it. Courtesy: Stantec Architecture

Today’s buildings (residential, commercial, and industrial) consume more energy than any other sector of the U.S. economy, including transportation and industry, and are responsible for 40 percent of U.S. carbon emissions. As of 2006, commercial buildings accounted for 18% of primary energy consumption in the U.S. and used 36% of the nation’s electricity. Yet most buildings have at best a single meter that reports energy use on a monthly basis; only slightly better are the new generation of “smart meters” which provide a continuous stream of total energy use but no understanding of the end-use breakdown by component.

With advanced building technologies that are properly designed into integrated systems, commercial buildings can achieve dramatic energy savings—up to 80 percent or more for new construction and 60 percent or more for retrofits.

The User Test Bed Facility will be a one-of-a-kind center operated as a user facility by Berkeley Lab for the Department of Energy. Each test bed will consist of two side-by-side room-sized test cells, with one acting as the control and the other as the test condition. “We’ll be testing and optimizing integrated building systems, such as how does automated window shading impact heating and cooling loads. Those are technically challenging issues—hard to measure and hard to understand because they vary dramatically with weather conditions. This facility will allow us to accurately compare energy impacts side by side, including the effects of all major building systems,” says Steve Selkowitz, head of the Building Technologies Department and lead scientist on the project. “There’s really nothing like it in the world, operating at this scale.

Additional information:

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security