The flowchart is the program

Right now in my top desk drawer along with pencils, staples, and a big bottle of antacid tablets is a large green plastic rectangle with outlines of various shapes cut from it. Protecting it is the original paper envelope which explains the meaning of those oddly shaped cutouts. Block letters proclaim: "IBM Flowchart Template.


Right now in my top desk drawer along with pencils, staples, and a big bottle of antacid tablets is a large green plastic rectangle with outlines of various shapes cut from it. Protecting it is the original paper envelope which explains the meaning of those oddly shaped cutouts. Block letters proclaim: "IBM Flowchart Template." The simple device with no moving parts has everything I need to design a complex numerical algorithm or real-time control application—processing blocks, conditional branches, control transfer points, input, output and storage functions, and a straight edge to draw lines connecting them.

NemaSoft (Ann Arbor, Mich.) offers a software version of that flowchart template in a product called OpenControl. One important difference is that when I'm finished drawing the program flowchart with OpenControl (in what its designers call Visual Flowchart Language or VFL), I'm also finished writing the program and have a ready-to-run application.

I must admit I was led off track by references in NemaSoft's web site to the IEC 61131 standard. OpenControl's VFL is not one of the five dialects specifically defined under IEC 61131 part 3. VFL fits under the ISO 5807 flowchart specification (as does my big green plastic template) and compiles into IEC 1131 Structured Text (ST) for actual execution in the Hyperkernel runtime engine. Addressing and naming conventions are faithful to IEC 1131 definitions for inputs, outputs, and memory representations for variables used in the program.

Designing a program with VFL really is as straightforward and sensible as drawing the flowchart on paper, and a lot less prone to error. I simply pull down and drop shapes from a menu to build the flowchart in a chart window. Those elements include rectangular process blocks for evaluating numerical expressions, oval-shaped program termination blocks, and diamond-shaped decision blocks for program branches and "while" or "until" loops. Filling in the content of those blocks is just about foolproof. First, I choose a verb from a long picklist (such as "Turn On," "Turn Off," "Increment," "Start," or "Stop"). There are sets of command actions for timers, string handling, motion control, serial port operations and diagnostics as well. Next, I furnish the noun by way of a tag browser and expression builder to fill in variables or expressions to be operated upon. My first attempt at writing a VFL program without reading a manual or a help file of any sort passed validation, compiled and ran with no errors or warnings; I can't remember that ever happening to me before.

Behind the graphical front end is a runtime engine called Hyperkernel. That engine seems to have done well in some demanding automotive applications. It runs under Microsoft Windows NT but actually takes over basic realtime scheduling from NT. Hyperkernel is designed to have the final say in what gets a slice of CPU time, rather than NT.

OpenControl supports a number of important field device protocols including Allen-Bradley remote I/O, DeviceNet, Honeywell SDS, Interbus-S, Modbus, Opto 22, and Profibus.

OpenControl and Hyperkernel run under Microsoft Windows NT 3.51 or 4.0 with service packs 1, 2 and 3. The company recommends at least a Pentium 100 MHz processor with 32MB RAM. An individual 256-tag run time license starts at $995; a full professional development system with unlimited tags, the full set of I/O drivers and full factory support goes for around $10,000.

For more information on OpenControl, visit .

Author Information

Contributing Editor, Jay R. Jeffreys, P.E. is senior systems engineer at Industrial Systems Design, Johnson City, Tenn.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me