The 'loadcenter' unit substation concept and World War II

In this "Cut the Copper" installment, we learn about how the shortage of copper forced plant electrical engineers and consulting engineers to become more creative in their designs of electrical power systems for large industrial plants.

04/10/2012


During World War II and immediately afterward, U.S. manufacturing industries were running at hyper-speed, expanding as fast as possible to keep up with wartime and post-war demand for products of all types.

Throughout the war, supplies of copper were exceedingly tight. Virtually all of the copper that could be produced and obtained by the U.S. went into the war effort. Demand for things like internal wiring for all of the new ships and planes and tanks, cable and bus for the new plants being built to manufacture the war machinery, and munitions and copper shell casings, all combined to consume virtually all of the copper that was available.

The supply of copper became so tight that for several years the U.S. Mint even coined pennies punched out of steel (zinc plated, to prevent rusting) in order to conserve precious copper for uses strategically more important than pennies.

The overall situation forced plant electrical engineers and consulting engineers to become more creative in their designs of electrical power systems for large industrial plants, and the “Loadcenter Unit Substation” concept was born.

Comparison of copper used with 'loadcenter' approach versus outdoor tranformer and 450 V duct bank.The basic concept was that if you could take medium voltage distribution at 5, 15, or 25 kV, and run it long distances deep inside a big factory over very small conductors, then connect it to step-down transformers located “in the center” of the actual heavy loads, then the very large cross-section low voltage secondary feeder cables could be greatly reduced in length.

So, Askarel-filled “loadcenter unit substations” became instantly popular, and were installed right out in the middle of manufacturing floors or on mezzanines directly above them, in thousands of plants all over the country. Where intelligently designed, the concept could often eliminate the need for about 80% of the copper that otherwise would have been required, so this was great innovation with important consequences. The terms “Loadcenter Unit Substation” and just plain “Loadcenter” stuck in the industry for decades.

This trend continued during the huge industrial expansion immediately after the war. And, over the next 30 years, tens of thousands of Askarel-filled loadcenter substation transformers were produced and installed inside industrial buildings.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me