Time-proportional control: more from an on/off switch

Time-proportional control, a form of pulse-width modulation, is a mathematical technique that allows a feedback controller to use an on/off or discrete actuator as if it were a continuous actuator capable of generating control efforts anywhere between 0% and 100%. The trick is to turn the actuator on and off for periods proportional to the desired control effort.

05/27/2009


Time-proportional control , a form of pulse-width modulation , is a mathematical technique that allows a feedback controller to use an on/off or discrete actuator as if it were a continuous actuator capable of generating control efforts anywhere between 0% and 100%. The trick is to turn the actuator on and off for periods proportional to the desired control effort.

Consider a home cooling system, for example. Most thermostats use a “bang-bang” control algorithm that compares the actual room temperature with the setpoint specified by the room’s occupants, then turns the air conditioner fully on or fully off if the temperature is more than a few degrees too high or too low. This technique causes the room temperature to fluctuate around the setpoint, but in most homes, that’s good enough.

By cycling a discrete actuator on and off, a time-proportional controller can emulate the effects of a continuous actuator. In teh top example, the controller is attempting to achieve a 50% control effort by keeping the actuator in the

By cycling a discrete actuator on and off, a time-proportional controller can emulate the effects of a continuous actuator. In teh top example, the controller is attempting to achieve a 50% control effort by keeping the actuator in the "on" position 50% of the time.

The thermostat could achieve tighter control with a continuous actuator such as a motorized damper that would continuously allow a measured amount of chilled air into the room. Those are common in commercial HVAC applications but are typically too expensive for home use.

But with time-proportional control, a home thermostat wouldn’t need a continuous actuator to emulate its effects. It could use the air conditioner’s on/off switch to regulate not the amount of cool air being dumped into the room but the duration of each blast. To achieve an X% control effort, the thermostat would simply turn the air conditioner on for X units of time then off for 100 minus X units of time.

If those units are small compared to the time it takes to cool the room (a few minutes or so), then the average effect of turning the air conditioner fully on for X% of the time will be identical to running the air conditioner at X% of full capacity continuously. In the short term, the room temperature would still fluctuate around the setpoint, but typically not as much as with bang-bang control.

Other applications of time-proportional control might require minimizing those fluctuations, in which case the minimum time between “on” and “off” commands — the controller’s duty cycle — would have to be reduced. Unfortunately, that would also increase the wear and tear on the actuator by increasing the frequency with which it switches states.

A 50% control effort would be the worst case since the actuator would have to switch states at the end of every duty cycle. In the home cooling example, a duty cycle less than several minutes long would quickly wear out the air conditioner’s motor starter.

At the other extreme, a duty cycle on the order of hours would help extend the life of the motor starter, but the air conditioner would end up running for hours on end, thereby amplifying the room temperature’s fluctuations to an uncomfortable degree.

Microsoft provides free clip art.
Time-proportional control works best on relatively slow processes and processes that provide a mechanism for smoothing out the effects of the actuator’s flip-flopping. In addition to temperature control, applications suitable for this technique include level and pressure control of large volumes and applications for which a continuous actuator would be prohibitively expensive.


Author Information

Vance VanDoren is consulting editor for Control Engineering . Reach him at controleng@msn.com .




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.