Understanding Decentralized Motor Control


Motor Control



July 25, 2007

Top Story

Understanding Decentralized Motor Control

For material handling chores, the old saying of divide and conquer was never truer. In the case of motor control, it's decentralize and conquer. Decentralized control systems are helping companies achieve big gains in productivity and even bigger cost savings.

In a decentralized control system, motor control functions are removed from a central control cabinet and distributed out on a machine, close to the motors. Savings of typically one-third are realized due to reduced material and labor costs. In addition to saving money, decentralized control systems save panel and floor space. They also reduce startup time and increase overall uptime. For these reasons, any application with 10 or more motors, as a rough rule of thumb, would benefit from a decentralized drive system.

A decentralized motor control system combines a variable frequency drive or motor starter, I/O, disconnect switch, integrated brake and overload control, fieldbus, power, and frequently a safety stop, into a unit that's either integrated with or mounted near a motor. The savings in money, space, and time arise due to that proximity.

This is an animated image, click on it to see it in action.

A decentralized motor control system combines a fieldbus, I/O, a disconnect switch, brake and overload control, and power into a unit that's either integrated with or mounted near a motor. Source: SEW-EURODRIVE. This is an animated image, click on it to see it in action.

Savings at the panel
Those economies begin at the panel. In a conventional centralized setup, the drive panel houses the controls. The panel has to be sized to accommodate the electronics, including expensive heat dissipating systems, with an increase that scales with the number of motors. Estimates are that up to half the space in a typical drive panel is consumed this way, which makes the panels both larger and more expensive. A decentralized drive system eliminates the need for many of these components, including fans, heat sinks, terminal blocks, junction boxes and remote I/O modules. This shrinks the panel size and costs.

With a traditional approach, expensive cable and tray are required between the panel and motor. The more motors, and the longer the distance between the panel and motor, the more cable and tray are needed. In contrast, a decentralized system requires minimal wiring due to the close proximity of the motor to its control devices. Fewer wires mean less potential for cross-talking noise and interference, a major source of machine downtime. The cost of adding motors is also reduced because a decentralized system relies on branch feeders.

An independent study by Applied Engineering Solutions estimated total cost savings of decentralized versus centralized methods could run 20 to 60 percent, depending upon the exact configuration and size of the project. According to the study, most of the savings are achieved from reduced labor costs for installation, startup and panel construction, as well as cable. A real-world example involving a continuous curving conveyor system with 112 motors found savings of about $150,000, largely in the form of reduced installation costs. The benefits of decentralization, however, aren't confined to installation.

Savings in people and time
Decentralization also benefits system startup and day-to-day operation. Since the controlling electronics sit next to the motor, a technician has easy access to the information needed for troubleshooting and system startup. A single technician can commission the system, or diagnose a problem and make repairs once the system in operation.

Decentralized control systems, where islands of control surround motors and other operating devices, also significantly reduce engineering time. Each island needs only to control a discrete number of functions, simplifying programming and debugging. This also allows the use of smaller, less expensive PLCs. By connecting these islands of control to communication networks, entire processes can be monitored easily without disrupting local functionality. As a result, you gain all the advantages of centralized control in monitoring system health without the complexity and cost.

Automotive manufacturers were among the earliest adopters of decentralized control, using it to make faster production line changes and reduce vehicle manufacturing costs. Decentralized control systems allow them to eliminate the long cable runs that are expensive to install, easy to damage and time-consuming to change.

As stated earlier, decentralized control shows most promise for applications involving ten or more motors. These include the large conveyor systems used in material handling applications such as packaging, food and beverage processing, logistics and warehouses, as well as automotive and other assembly processes.

It should be noted that not all decentralized control systems are equal, and certain factors should be carefully considered. For example, it's important to have modular components. This allows a failed component to be quickly replaced, rather than replacing an entire unit, which reduces downtime. Just a few spare parts need to be kept on hand rather than entire systems. The system should also allow a wide range of fieldbus network choices.

A number of vendors offer decentralized motor control components and configurations for material handling. SEW-EURODRIVE, for example, has introduced its next generation decentralized control solution, a modular system called MOVIFIT , which provides a flexible, scalable platform for both wet and dry environments. The company also offers a whitepaper on frequently asked questions on the topic.

With material and labor costs typically reduced by one third with the use of decentralized motor control, builders of material handling systems owe it to themselves—and their customers—to investigate the possibilities.

Return to top

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.