Understanding programmable controllers

A programmable controller, or PLC as it is commonly known, is the heart of an industrial control system (Fig. 1).

10/01/2000


A programmable controller, or PLC as it is commonly known, is the heart of an industrial control system (Fig. 1). It functions as one component in a collection of devices configured to ensure a stable, accurate, and smooth operation of a process or manufacturing activity. Rapid advances in technology have allowed complicated tasks to be accomplished by these systems, which typically include a host computer, field devices, networking communications, and controllers.

Although there are various types of controllers, PLCs are still the most popular. Drawing upon a control application program stored in its memory, the PLC monitors the system through the signals of various field input devices. Based on its program logic, it then determines a course of action to be carried out by the field output devices.

Components

In simple terms, a PLC is a solid state device that controls output devices based on input status and a user program (Fig. 2). For example, the PLC may receive inputs from a switch or thermocouple (Fig. 3a), and set corresponding outputs (Fig. 3b) such as "turn on a light" or "close a valve" based on the instructions in its program (Fig. 4). It may be used to control a simple and repetitive task. Or it may be grouped with other PLCs and computers and linked through a communications network to integrate the control of a complex process (Fig. 5).

Every PLC has four basic components.

  • CPU , or processor, stores program files and data into memory and executes the program.

      • Power supply provides power to modules in the chassis. It does not usually power any I/O devices.

          • Chassis , or backplane, is the hardware into which I/O and specialty modules are plugged. It provides the communications link from the modules to the processor.

              • I/Os are the modules to which the field devices physically connect.

                • Programming

                  A PLC reads the input information and sets appropriate outputs based on a program entered by the user. The process by which the PLC scans its inputs, executes its program rungs, turns on outputs, performs housekeeping tasks, and returns to the first rung to start the sequence again is called a program scan . Instructions include addresses that are used to correlate physical I/O data into PLC memory locations and store internal data and values used in the ladder program. Addressing schemes vary with the PLC product.

                  PLCs are programmed from a computer equipped with the proper programming software or with a dedicated programming device designed for the particular PLC being used. Today, most users run a programming software package suited for the PLCs they are using on a standard PC connected to the PLC through a communications network. The increased functionality available today lets users do more complex programming, data handling, and information exchange. Operator terminals or human/ machine interfaces (HMIs) let users monitor processes and communicate instructions and information to the PLC more easily and more efficiently.

                  PLCs may be programmed in a number of ways. Six languages are commonly used:

                  • Relay ladder logic

                      • Instruction list

                          • Sequential function chart

                              • Function block

                                  • Structured text

                                      • High level (C, Basic, etc.).

                                        • By far, ladder logic is most well known and most common (Fig. 6). It is fast and well suited for sequential logic, discrete logic, timing/counting, and Boolean operations. Instruction list is a low-level language similar to assembly language. Powerful but difficult to learn, it is useful when small functions are repeated often. Sequential function charts are typically used for batch/sequential control.

                                          Function blocks are targeted at process and drive systems and show the flow of the program more easily. Structured text is similar to Basic or Pascal and well suited for complex math and data handling. Although not normally used for PLCs, high-level languages such as C or Basic can be applied with the help of special modules. These languages are typically used for complex algorithms.

                                          Languages are governed by the international standard IEC 1131-3. It specifies their syntax, semantics, and display, in essence letting compliant multiple languages be used within the same PLC and letting the program developer select the language best suited for each task. The standard was developed with the input of vendors, end-users, and academics and is available from the American National Standards Institute. (See More info box for ordering information.)

                                          Integrated solutions

                                          PLCs are not isolated components. They are part of complex, integrated systems. They may be part of a control subsystem connected to a data acquisition system. They may be configured for centralized control or for distributed control (Fig. 7). They interact and are interoperable with compatible software, HMIs, network communications, remote I/O devices, and more. Without all the elements, the solution is not complete.

                                          Plant Engineering magazine would like to acknowledge with appreciation the special contributions made to this article by Allen-Bradley/Rockwell Automation, Cleveland, OH; Cutler-Hammer/ Eaton Corp., Cleveland, OH; GE Fanuc Automation, Charlottesville, VA; and Omron Elect ronics, Schaumburg, IL.

                                          Maintenance and troubleshooting

                                          PLCs are designed for reliability. Nonetheless, problems can occur. Most PLCs are equipped with a variety of self-diagnostic functions that help rapidly identify and correct errors that might occur. Fatal errors are serious and typically stop PLC operation. Nonfatal errors are less serious and program execution usually continues. However, the cause of the error should be corrected and the error cleared as quickly as possible. The accompanying flow chart can be used to help troubleshoot errors that occur during operation.

                                          Probably the biggest deterrent to system breakdown is adequate preventive maintenance for the PLC and the control system. Here are five points to keep in mind.

                                          • Inspect the tightness of the I/O terminal screws periodically. They can become loose over time.

                                              • Ensure that components are free of dust. Proper cooling of the PLC is impossible if layers of dust are present.

                                                  • Check for corrosion of connecting terminals periodically. Corrosion may occur in some environments. The printed circuit board and connector may become corroded internally.

                                                      • Maintain a certain amount of commonly used spare parts such as the input and output modules. Downtime is costly and should not occur because parts are not available.

                                                          • Keep proper documentation of the operating program and wiring circuit of the control system. They may be needed in case of emergency.

                                                            • More info

                                                              IEC-1131-3 is available from the American National Standards Institute, Inc., Customer Service Dept., 11 W. 42nd St., New York, NY 10036; 212-642-4900; fax: 212-302-1486; www.ansi.org. For more information about the International Electrotechnical Commission (IEC), visit its web site at www.iec.ch.

                                                              PLCopen (www.plcopen.org) is a worldwide association committed to supplying and using IEC-1131-compatible systems and to promoting the use of the standard.

                                                              Many web sites provide information about PLCs and their selection, application, and design. A few are listed below.

                                                              www.ab.com Allen-Bradley/Rockwell Automation

                                                              www.cutlerhammer.eaton.com Cutler-Hammer/Eaton Corp.

                                                              www.gefanuc.com GE Fanuc Automation

                                                              www.omron.com Omron Electronics, Inc.

                                                              www.sea.siemens.com Siemens Energy and Automation

                                                              www.squared.com Square D





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.