Unlocking nanofibers' potential for energy applications

Researchers at MIT have developed a prototype that boosts production of versatile fibers exponentially while cutting energy consumption by more than 90%.


Figure 1: A scanning electron (at 125 µm) micrograph of the new microfiber emitters, showing the arrays of rectangular columns etched into their sides. Courtesy: Luis Fernando Velásquez-García, Phillip Ponce de Leon, Frances Hill, Eric Heubel, MITNanofibers—polymer filaments only a couple of hundred nanometers in diameter—have a huge range of potential applications, from solar cells to water filtration to fuel cells. But so far, their high cost of manufacture has relegated them to just a few niche industries.

In the journal Nanotechnology, MIT researchers describe a new technique for producing nanofibers that increases the rate of production fourfold while reducing energy consumption by more than 90%, holding out the prospect of cheap, efficient nanofiber production.

"We have demonstrated a systematic way to produce nanofibers through electrospinning that surpasses the state of the art," said Luis Fernando Velásquez-García, a principal research scientist in MIT's Microsystems Technology Laboratories, who led the new work. "But the way that it's done opens a very interesting possibility. Our group and many other groups are working to push 3-D printing further, to make it possible to print components that transduce, that actuate, that exchange energy between different domains, like solar to electrical or mechanical. We have something that naturally fits into that picture. We have an array of emitters that can be thought of as a dot-matrix printer, where you would be able to individually control each emitter to print deposits of nanofibers."

Tangled tale

Figure 2: A scanning electron (at 500 µm) micrograph of the new microfiber emitters, showing the arrays of rectangular columns etched into their sides. Courtesy: Luis Fernando Velásquez-García, Phillip Ponce de Leon, Frances Hill, Eric Heubel, MITNanofibers are useful for any application that benefits from a high ratio of surface area to volume—solar cells, for instance, which try to maximize exposure to sunlight. Another example are fuel cell electrodes, which catalyze reactions at their surfaces. Nanofibers can also yield materials that are permeable only at very small scales, like water filters, or that are remarkably tough for their weight, like body armor.

The standard technique for manufacturing nanofibers is called electrospinning, and it comes in two varieties. In the first, a polymer solution is pumped through a small nozzle, and then a strong electric field stretches it out. The process is slow, however, and the number of nozzles per unit area is limited by the size of the pump hydraulics.

The other approach is to apply a voltage between a rotating drum covered by metal cones and a collector electrode. The cones are dipped in a polymer solution, and the electric field causes the solution to travel to the top of the cones, where it's emitted toward the electrode as a fiber. That approach is erratic, however, and produces fibers of uneven lengths; it also requires voltages as high as 100,000 volts.

Thinking small

Velásquez-García and his co-authors—Philip Ponce de Leon, a former master's student in mechanical engineering; Frances Hill, a former postdoc in Velásquez-García's group who's now at KLA-Tencor; and Eric Heubel, a current postdoc—adapt the second approach. However, it is done on a much smaller scale using techniques common in the manufacture of microelectromechanical systems to produce dense arrays of tiny emitters. The emitters' small size reduces the voltage necessary to drive them and allows more of them to be packed together, increasing production rate.

At the same time, a nubbly texture etched into the emitters' sides regulates the rate at which fluid flows toward their tips, yielding uniform fibers even at high manufacturing rates. "We did all kinds of experiments, and all of them show that the emission is uniform," Velásquez-García said.

To build their emitters, Velásquez-García and his colleagues use a technique called deep reactive-ion etching. On either face of a silicon wafer, they etch dense arrays of tiny rectangular columns—tens of micrometers across—which will regulate the flow of fluid up the sides of the emitters. Then they cut sawtooth patterns out of the wafer. The sawteeth are mounted vertically, and their bases are immersed in a solution of deionized water, ethanol, and a dissolved polymer.

When an electrode is mounted opposite the sawteeth and a voltage applied between them, the water-ethanol mixture streams upward, dragging chains of polymer with it. The water and ethanol quickly dissolve, leaving a tangle of polymer filaments opposite each emitter, on the electrode.

The researchers were able to pack 225 emitters, several millimeters long, on a square chip about 35 mm on a side. At the relatively low voltage of 8,000 volts, that device yielded four times as much fiber per unit area as the best commercial electrospinning devices.

Massachusetts Institute of Technology (MIT)


- Edited by Chris Vavra, production editor, Control Engineering, cvavra@cfemedia.com. See more Control Engineering energy efficiency stories here.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me