Using 2-wire proximity sensors

Dear Control Engineering: Is it practical to replace a 3-wire proximity sensor with 2-wire type?


Dear Control Engineering: Is it practical to replace a 3-wire proximity sensor with 2-wire type?

Panasonic Electric Works says it can be done. When using inductive proximity sensors for a control application, it is common to choose a 3-wire dc proximity sensor with a dedicated NPN (ground switching) or PNP (positive switching) control output and bring the output into a PLC input. Choosing between polarities means determining how the common is wired and selecting accordingly. If your machines mix NPN and PNP sensors, there’s an alternative to stocking both types of spares to prevent a line-down situation.

Panasonic suggests that instead of having the control output circuit separated from the power circuit, the 2-wire design puts everything in parallel, which consolidates circuitry into one loop. In a typical 3-wire PNP circuit, the output wire is specific in its polarity so that it will only function on with a 0 V common. With the 2-wire variation, the output operation is along the two power wires in the form of a voltage drop, thus making the sensor free to work with either polarity on the common.

With wiring as the diagram shows, a 2-wire sensor can replace NPN and PNP 3-wire models, just by following the flow of current. This greatly simplifies the usage and replacement of inductive proximity sensors across all applications, the company says.

Learn more and see other diagrams at Panasonic.

Also see the Control Engineering Sensor Channel.

-Edited by Mark T. Hoske, editor in chief, Control Engineering,

Posted by Ask Control Engineering on March 20, 2010

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
Industrial wireless cyber security: More complex than black and white; IIoT at the I/O level; Process modeling; Cyber security research
Robotic advances: Software, form factors; System-based ROI; Embedded control; MES and information integration; SCADA and cyber security; Position sensor; Controller, I/O module
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle