Using PID for motion control, robotics

Advice follows on using proportional-integral-derivative (PID) tuning for motion control and robotics. High-end robotics with high dynamics and reasonably high accuracy of movement almost always require the use of these control algorithms for operation.


Figure 2: Table shows how poor proportional-integral-derivative (PID) controller tuning can cause problems. On the left are the graphs; on the right, the explanations. Courtesy: Valin Corp.Control Engineering asked for advice on using proportional-integral-derivative (PID) tuning for motion control and robotics. John Brokaw, senior application engineer, Valin Corp., explained that high-end robotics with high dynamics and reasonably high accuracy of movement almost always requires the use of these control algorithms for operation.

How does PID apply to motor control or robotics?

PID is the control algorithm that is used by most motion control applications. Some will only use a portion of this control method such as PI or even just proportional control, depending on the application. High-end robotics with high dynamics and reasonably high accuracy of movement almost always require the use of these control algorithms for operation.

With a pick-and-place machine, how can PID be applied?

PID is a control algorithm that resides in the electrical drive and the control section of a device like a pick-and-place machine. For pick-and-place, there are typically three control loops: torque, velocity, and position. Typically, the A drive will control the torque loop, with the "controller" handling the speed and position control. Note that this is not always the case as some drives can handle the speed loop and even position control in the case of an integrated drive/control.

How does poor tuning affect a pick-and-place application? The robot is too slow? It overshoots the correct position? It can't cope with changing loads?

Poor tuning can have a number of deleterious effects on a pick-and-place application, the most obvious being that the system isn't stable or accurate. A poorly tuned system can vibrate and place products inaccurately. In addition to inaccuracy, poor tuning can result in trips of the machine as well as overheating of and damage to the motors and drives.

Coping with changing loads is a very challenging requirement for pick-and-place applications. Proper tuning is important, but in the most extreme situation, dynamic tuning may be required to cope with this issue.

How might adjustments to PID tuning affect an application?

In a car's cruise control that uses PID, if the system is overtuned, it would rapidly accelerate while braking up and down in search of a steady speed, whereas an undertuned system would take a long time to respond to changes in demand such as going up a hill. In this case, the motor would lag out and slow to a crawl. PID is a mathematical algorithm that can be used to optimize these control requirements. A proper PID tuning algorithm in the case of cruise control would result in getting up to speed at a reasonable rate without overshooting the desired speed by more than an acceptable margin or maintaining a consistent speed under changing demands.

- John Brokaw is senior application engineer, Valin Corp. Edited by Mark T. Hoske, content manager, Control Engineering,


Key concepts

  • Proportional-integral-derivative (PID) control can be used in discrete applications, for motion control and robotics.
  • Poor tuning can have a number of deleterious effects.
  • Dynamic tuning may be required to cope with changing pick-and-place loads.

Consider this

Newer, smarter software with more advanced algorithms may be able to adapt more quickly and easily to motion control and robotics applications. 

ONLINE extra

See related articles about PID below.

Modern updates in PID control tuning

While PID control is often used because of its adaptability to a wide range of applications and operating conditions, there are several common problems that occur during the PID tuning process. Automatic and adaptive tuning can reduce the time and frustration often involved in reaching the correct tuning parameters for a given operation.

Evolving PID tuning rules 

A brief history, starting with the earliest PID controllers to the most recent developments. There is more continuity than you might expect.

Understanding Derivative in PID Control 

The third factor in PID is the least understood. Derivative action can do good things, but when used improperly, it causes headaches.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me