Vision and motion hardware added to controller platform

A reconfigurable Camera Link frame grabber for embedded vision and a motion module were added to the CompactRIO controller platform from National Instruments.

12/13/2011


National Instruments (Nasdaq: NATI) introduced two new additions to its NI reconfigurable I/O (RIO) technology including a reconfigurable Camera Link frame grabber for demanding embedded vision applications and a motion module for the NI CompactRIO platform.

National Instruments added a frame grabber and a motion module were added to their CompactRIO platform to allow for greater flexibility and versatility for engineering operations. Courtesy: NIThe NI PCIe-1473R frame grabber is a PC-based embedded vision board that combines field-programmable gate array (FPGA) technology with a Camera Link interface to help engineers create high-performance embedded imaging and inspection applications. The NI 9502 brushless servo drive C Series module makes it possible for engineers to drive brushless servo motors, including six new custom NI motor options, directly from the reconfigurable CompactRIO system to address advanced motion control challenges.

The NI PCIe-1473R frame grabber is ideal for advanced inspection and imaging applications that require image preprocessing and high-speed control such as medical imaging, web and surface inspection and high-speed sorting. Engineers and scientists can program the new frame grabber’s onboard FPGA with the NI LabVIEW FPGA Module for custom image processing and analysis in real time, with little to no CPU intervention. The frame grabber combines the onboard FPGA with a high-bandwidth 850 MB/s Camera Link bus, which supports a range of Camera Link configurations up to 10 taps and 80 bits. The NI PCIe-1473R also supports Power over Camera Link (PoCL) to directly power cameras with no additional cables or external power supply. With such features, the frame grabber is an off-the-shelf solution that makes it possible for engineers to create high-performance imaging applications without spending substantial time and money to develop a custom design.

With the addition of the NI 9502 motion drive module for CompactRIO, engineers can now power brushless, stepper or brushed servo motors directly with NI C Series modules to provide a compact solution for integrating motion into advanced control, monitoring and test systems. The NI 9502 offers 4 A continuous/8 A peak current and multiple commutation modes. To complement the module, NI is also releasing six three-phase brushless motors that are specifically designed for maximum performance and direct connectivity with the NI 9502. With these features and more, the NI 9502 helps engineers implement proprietary custom drive control algorithms at the FPGA level through LabVIEW FPGA, eliminating the need for custom firmware from a drive manufacturer.

NI RIO technology combines LabVIEW system design software with commercial off-the-shelf hardware to simplify development and shorten time to market when designing advanced control, monitoring and test systems. NI RIO hardware, which includes CompactRIO, NI Single-Board RIO, R Series boards and the PXI-based NI FlexRIO, features an architecture with powerful floating-point processors, reconfigurable FPGAs and modular I/O. All NI RIO hardware components are programmed with LabVIEW to give engineers the ability to rapidly create custom timing, signal processing and control for I/O without requiring expertise in low-level hardware description languages or board-level design.

www.ni.com 

National Instruments

- Edited by Chris Vavra, Control Engineering, www.controleng.com 



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.