What is a "sanitary" device?

09/17/2010


Dear Control Engineering: One of the things I see regularly in your new product listings are devices that are designated as “sanitary,” for use in food and pharmaceutical applications. What does that mean?

Manufacturing plants that produce food and pharmaceutical products are concerned about bad things growing in a manufacturing environment that could make it into the final product and cause contamination. Such things can make consumers sick or even dead, so we should all be glad such concerns exist. There are many organizations that oversee food and pharmaceutical manufacturing, depending on the specific segment. For example, there is the U.S. FDA, various departments of agriculture, and local health departments.

These groups use standards for hardware configuration and production practices that describe in extraordinary detail exactly what the equipment should look like and materials of construction. One such group is the International Association of Food Industry Suppliers (IAFIS), which is connected to the 3-A Sanitary Standards organization. These standards describe how equipment is to be made such that it can be adequately sanitized in cleaning processes, and not provide a breeding ground for bacteria and other bugs that can contaminate products. The standards touch on many key points:

• Appropriate materials, e.g., stainless steel and various plastics;
• Cleanable surface finishes;
• Absence of internal cracks, crevices, threads, and pockets;
• Welding specifications, and so forth.

These standards and practices came out of the dairy industry originally, but have now been adopted for many applications with similar concerns.

A sanitary temperature sensor (left).Devices, such as temperature transmitters or pressure sensors, that are made to be inserted into process piping or tanks, normally use the same kinds of fittings as the pipes themselves. This tri-clamp system uses a pair of tapered flanges on the end of the pipe or device that mate with a gasket and external clamp. This approach ensures an effective seal, but one that can be disassembled easily and minimizes any possibility of breeding contamination.

In the photo, the device on the left is designed for sanitary insertion and built in compliance with the relevant 3-A requirements. If you looked at the underside of the flange, you would see that it has a very fine surface finish, the point where the probe joins the flange has a smooth fillet, and an appropriate grade of stainless steel is used. The key point is that the device cannot become a source of contamination.

--Peter Welander, pwelander(at)cfemedia.com



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.