What is process linearity?

10/29/2010


Dear Control Engineering: Recently you were talking about linearity in instrumentation devices. What is process linearity?

Process linearity is similar in that it looks at the relationships between elements of a process and the output. Does output change in direct proportion to a change in input.

Let’s say you want to boil a gallon of water to make spaghetti, so you put a big pot on the stove. For the sake of this discussion, you have a thermometer in the pot so you can read the water temperature, and there is a calibrated knob on the stove that allows you to see how much gas you are sending to the burner.

After the first 10 minutes, you see that burning 5 units of gas per minute has raised the temperature of the water by 40 °F. If you double the amount of gas, will the temperature rise twice as fast? Probably not. Here’s why:

The fire will be burning higher, but all that heat will not necessarily go into the pot. Some will simply wash up the sides and heat the room. Just because there is more heat does not mean the pot is able to absorb it. Also, as the water gets hotter, the overall heat transfer characteristics will begin to change and more heat will escape out of the top of the pot as the difference in the temperature of the water and ambient air becomes greater.

If you really get carried away, you could try and try to graph the relationship between gas consumption and temperature change. You would have to consider it at all sorts of conditions, with cold water vs. hot water, high vs. low burner, different ambient temperatures, etc. It’s not a simple relationship and won’t likely be very linear when you figure it all out.

In a typical chemical process application, there are many such relationships and the linearities are not necessarily working together. That’s why some processes are difficult to regulate. You may want to increase production by forcing more feedstock into a reactor, but that doesn’t make the reactor any bigger and the required reaction may not be complete.

As a practical matter, most processes are designed to operate within a relatively narrow range where behaviors are predictable. An oil refinery doesn’t normally turn a unit down to 40% because demand has decreased temporarily. It probably can’t operate at that level, nor can it operate at 200%.

A well designed process unit tries to bring all the different elements together so they are all operating in their sweet spots at the desired production level. This kind of plant should be relatively easy to control. A poorly designed plant often has various elements mis-matched such that one is at its upper limit and another is at its lower limit. These end up working at cross purposes and make for an unstable environment. The art is being able to identify those issues and correct them.

Peter Welander, pwelander(at)cfemedia.com



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.