What's So Hot About Chilled-Water Storage?


If power companies around the world are still offering customer incentives to reduce peak demand, when it comes to larger chilled-water cooling systems, why are so many mechanical engineers ignoring the money-saving advantages and other significant benefits of chilled-water storage (CWS)?

Often, new facilities that seem particularly suitable for CWS are being designed to employ conventional, nonstorage cooling systems. Admittedly, there aren't that many papers available documenting the reputed savings, but many happy owners using thermal-energy storage (TES) know that, as compared to their previous cooling systems, they:



Moreover, when adapted properly to the circumstances, CWS also offers competitive front-end and life-cycle costs. Put together, that's a pretty hot case for CWS and TES.

Favorable off-peak, load-leveling power rates that lead to significant operating economies are the advantage most often cited for TES. Nevertheless, some CWS proponents believe that system selection should be determined by a thorough engineering analysis rather than by determining economies based on power company rebates and incentives alone. The same boosters of CWS also feel that the system's future must rely on competing with alternatives on a level economic playing field. More experience may well support those contentions, but existing energy- cost-savings potential-absent any artificial incentives-continues to be a significant near-term inducement in itself.

Sample savings

For example, a 1.5-million-gallon storage tank is estimated to provide an energy demand shift of 1.7 megawatts. With CWS tanks ranging from half a million gallons on the small end to nearly ten million gallons at the high end, the potential for serious money savings can certainly be an attention-getter.

For the hundreds of storage systems in use in the United States today, most of the "selling talk," as previously mentioned, has centered on documented first-year (and subsequent-year) energy savings, some as high as 8 percent to the owner. Again, while that is something to catch an owner's eye, focusing only on energy savings can be a misleading determinant in opting for a CWS cooling system. There are other compelling plusses that designers need to consider. It's useful to consider some of the other benefits CWS can bring to the table, especially over competing ice-storage systems.

CWS systems have consistently proven to offer enhanced operating reliability, greater management flexibility, fewer "bottleneck" situations and spare emergency capacity over ice-storage. Moreover, as hinted earlier, there can be strong capital cost savings and-because of the system's simplicity of operation-favorable life-cycle costs.

Thermal storage systems can reduce the size of heating, ventilation and air-conditioning (HVAC) equipment, further reducing initial capital costs for distribution pumps, piping, fans and ducts. This cost reduction over traditional HVAC componentry-in some cases-can be significant enough to fully offset the additional costs imposed by CWS storage tanks.

Fire safety follows

Often overlooked is the fire- and life-safety aspect of storage systems. Storing large amounts of water on site is an asset for fire protection and, in some CWS designs, the sprinkler-system water is incorporated into the overall CWS system. This can be a serious advantage in many developing industrial parks or sites where infrastructure such as municipal water and sewers are not in place or of sufficient capacity.

Furthermore, a CWS system designed to double as storage for fire-protection system water can reduce the size needed for water lines to a proposed industrial site. This reduction can be enough to merit the project a "go" from planning authorities in those situations where the jurisdiction can't provide water mains of sufficient size to meet site demands. Without question, large water-storage capacity definitely enhances a building or plant's fire-protection capability.

Of course, there are some "cons" to consider. Siting a 500,000-gallon or larger storage tank is unquestionably a challenge in some circumstances. This issue and the attendant construction costs are generally considered the major objections to designs incorporating CWS, whether installation is above or below grade. Working with a creative architect, however, can convert these cons into assets by designing the tank structures to blend in with, or even enhance the particular site.

CWS is not the answer in every large-scale space-conditioning situation, but it definitely is a good answer in a lot more cases than some designers apparently believe. The systems do tend to work better for district-cooling or industrial-process applications where demand exceeds 10,000 ton-hours, but it is also worth considering for retrofits or expansions of some cooling plants. In an expansion situation, CWS can also provide for increased cooling loads without increasing the number of chillers.

Total engineering analysis

Before beginning a design, a total engineering analysis should be conducted to develop a thorough understanding of system requirements. Basic areas to be investigated include:




Further, a detailed economic analysis should look beyond the costs of equipment, installation and construction to the broader picture, including all owning and operating expenses for both primary and secondary systems.

If designers take the time to develop the best solutions, more CWS systems are likely to be specified.

About the author

In addition to his P.E., John M. Chaney, Jr., also holds a registration as a fire protection engineer. In his fifteen years at Hayes, Seay, Mattern & Mattern, Inc., he has been responsible for mechanical/life-safety analyses and designs for research laboratories, education facilities and other campus-oriented structures for government owners and private businesses. Chaney currently serves as director of the mechanical engineering department.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.