White Paper: Stability of Discrete Systems Controlled in the Presence of Intermittent Sensor Faults

This paper presents sufficient conditions for stability of unstable discrete time invariant models, stabilized by state feedback, when interrupted observations due to intermittent sensor faults occur. It is shown that the closed-loop system with feedback through a reconstructed signal, when, at least, one of the sensors is unavailable, remains stable, provided that the intervals of unavailability satisfy a certain time bound, even in the presence of state vanishing perturbations. The result is first proved for linear systems and then extended to a class of Hammerstein systems.


In recent years, the mass advent of digital communication networks and systems has boosted the integration of teleoperationin feedback control systems. Applications like unmanned vehicles [1] or internet-based real time control [2]provide significant examples raising, in turn, new problems.This paper deals with one of such problems, if the communication channel through which feedback information passes is not completely reliable, sensors’ measurements may not be available to the controller during some intervals of time. In such a situation, one has to couple the controller with a block, hereafter called supervisor, which is able to discriminate between intervals of signal availability(availability time Tai ) and unavailability (unavailability time Tui+1 ), and to generate an estimate of the plant’s state during this Tui+1 intervals. Methods for detection and estimation for abruptly changing systems [3] can be applied in the problem considered here. For that purpose an algorithm based on Bayesian decision could be implemented, for example.

Click here to download the rest of the white paper.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
Industrial wireless cyber security: More complex than black and white; IIoT at the I/O level; Process modeling; Cyber security research
Robotic advances: Software, form factors; System-based ROI; Embedded control; MES and information integration; SCADA and cyber security; Position sensor; Controller, I/O module
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle