Why are PID loops so difficult to master?

Getting PID loops to operate well is a major concern in most process industries. Loop tuning related topics are the most heavily researched subject on the Control Engineering Website, year after year. Tuning articles are always heavily read. One would think that by now, loop tuning techniques would be mastered by middle school, but such is not the case.

06/01/2008


Getting PID loops to operate well is a major concern in most process industries. Loop tuning related topics are the most heavily researched subject on the Control Engineering Website, year after year. Tuning articles are always heavily read. One would think that by now, loop tuning techniques would be mastered by middle school, but such is not the case. Conventional industry wisdom suggests that one-third of loops work reasonably well, one-third are running fully in manual, and one-third limp along with periodic fiddling. Other sources suggest perhaps half of loops perform adequately.

So why are loops so hard to tune? At the ABB 2008 user group meeting, several reasons were suggested:

  • Process units frequently operate at production levels that are simply not suited to the equipment. In the real world, process hardware is designed and built for specific production levels and feedstock characteristics. However, production usually deviates from these, which makes a plant harder to control. The greater the deviation, the more control suffers.

  • Some processes, due to the dynamics and interactions of the process itself, are simply more difficult than others.

  • Process units frequently have multiple loops that interact, and one or two that misbehave can throw others off. The tricky part is identifying which are the most strategic to fix first. It can be difficult to differentiate cause from effect in the real world.

  • One size does not fit all. Parameters can be sensitive to operating levels. When a plant is running at full capacity, it may behave. When running at lower capacity, loop parameters may need to change to remain stable.

  • Hardware problems will frustrate you every time. If instrumentation, valves, and so forth do not perform reliably, the process unit will never perform reliably. The data may tell you what’s happening, such as having valves that stick or hysteresis problems, if you can spot the signs.

Software is available that may provide a solution or at least mitigate the problem. In the May 2008 issue of Control Engineering, our loop expert, Vance VanDoren, offers an in-depth analysis of control loop management software that may help point you in the right direction.






No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me