Working with multivariable sensors

Many smart instrumentation devices can give you more than just one process variable.

10/01/2009


With growing sophistication, instrumentation devices can often provide more than one variable. These measurements are free in that they don’t require any additional sensors or process penetrations. All they require is a way for you to extract the information.

Multivariable approaches fall into three categories depending largely on the needs of the primary variable:

Corrective measurements —Most electronic sensors are influenced to some extent by more than one variable. For example, pressure sensors that use capacitive or strain gage technologies are affected by temperature. Consequently, the transmitter for such a device takes its own temperature measurement and uses that data to correct the primary reading. Since that measurement is in the transmitter, it is usually a simple matter to provide it to the control system.

The caution of using corrective measurement data is making sure you understand where it comes from. The temperature in this example will be taken where it is needed to correct the primary variable and may not reflect the process at all; it may only reflect the ambient temperature around the transmitter or electronic devices. Make sure you understand what it is before you use such data.

Multiple measurements —One of the most common flow measurement methods is using an orifice plate and differential pressure gage. There are many implementation variations, but the basic concept calculates flow based on pressure readings on both sides of a known obstruction. While the flow measurement only needs the differential pressure value, it isn’t difficult to extract line pressure measurements as well.

Calculated measurements —With the growing sophistication of transmitter electronics, adding calculated values to measured process variables has become far simpler. Coriolis flowmeters use this technique, and can calculate a range of variables from the three that are actually measured. Probably the most common example of this is setting your Coriolis device to read in gallons or liters per minute, since the device does not measure volume. It calculates volume based on measurements of mass flow and density. The transmitter can be setup to provide whichever of the available values you need most as the primary variable.

Extracting the extra data

Most devices are designed to provide the primary reading via an analog signal (4-20 mA) or a digital output. However, if more information is available, you have to find a way to get at it.

A few devices offer multiple (usually two) analog outputs. This approach certainly works, but requires a cable for each variable.

The most common method for sending the secondary variable is via a HART signal on top of the primary variable. If you use a HART interface or have HART I/O connections with your control system, you can capture the secondary measurements and use them in any way that’s valuable to the process. Complex devices, such as Coriolis flowmeters, allow you to choose which output comes over the analog signal and which others are overlaid. There are various types of HART reading devices. Some translate the secondary variables into appropriate engineering units for display. Others convert them into a second or third 4-20 mA signal for input into a DCS. There are even wireless approaches for capturing the information.

Fieldbus protocols make multiple variables very simple, if you use that networking approach and have suitable devices. Using fieldbus requires minimal setup since all variables, primary and secondary, will be available in the appropriate engineering units. Moreover, they can all be handled with the same importance.

Multivariable sensors can be very useful in the right contexts, but using them to your best advantage does require some homework. As your best first step, make sure you know what your process needs.


Author Information

Peter Welander is process industries editor. Reach him at PWelander@cfemedia.com .




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.