Differential-pressure flowmeter well suited to steam
V-Cone flowmeter from McCrometer provides precision monitoring in enhanced oil recovery injection applications.
Upstream oil & gas engineers will find McCrometer’s precision V-Cone steam-injection flowmeter supports enhanced oil recovery (EOR) technologies that produce heavy oil from demanding environments, such as shallow oil sands deposits.
Featuring a specialized flow geometry and differential pressure (DP) technology, McCrometer says its self-conditioning V-Cone flowmeter provides high measurement accuracy and repeatability over a broad flow range, regardless of fluid dynamics. Accuracy is ±0.5% with repeatability of ±0.1% over a wide turndown, even with virtually no maintenance or recalibration requirements.
Steam injection has become an increasingly popular thermal process for third stage oil production. This EOR method is used to restore pressure, reduce viscosity, and improve flow to prolong the life of an oilfield. Steam flooding is used for shallow oil reservoirs with viscous oil, and can help reach recovery rates of 50 to 80%.
The V-Cone reduces permanent pressure loss by 75% compared to a typical traditional orifice plate. It features a rugged design with nothing to foul or break in harsh oil production environments. The contoured shape of the V-Cone’s beta edge prevents it from dulling, reducing the need for periodic inspections and plate replacement.
The company says the V-Cone design is inherently more accurate because a flow conditioning function is built into the design. The meter’s centrally located cone interacts with the steam and reshapes the velocity profile to provide a stable signal that increases measurement accuracy.
In steam flow, the pressure difference exhibited between the meter’s static line pressure and the low pressure created downstream of the cone is measured via two pressure sensing taps, with one tap placed slightly upstream of the cone and the other located in the downstream face of the cone itself. The pressure difference is then incorporated into a derivation of the Bernoulli equation to determine the flow rate of the steam. This effect also reduces the upstream/downstream straight pipe run required by up to 70%.
www.mccrometer.com
Visit the Control Engineering Process Control channel.
Edited by Peter Welander, pwelander@cfemedia.com
Do you have experience and expertise with the topics mentioned in this content? You should consider contributing to our WTWH Media editorial team and getting the recognition you and your company deserve. Click here to start this process.