System Integration tutorial: Measure Twice, Cut Once

The front-end loading (FEL) process applied to automation projects ensures that the human, financial, and physical tools are in place to get the job done right the first time.

By Tim Michalski December 1, 2011

Most of us have heard the old saying, “measure twice, cut once.” It simply expresses the importance of proper planning as a means of using time and other resources wisely. This same principle governs all engineering and installation projects, including updating an existing control system or designing a completely new one. Without proper planning, the job will, at best, cost more and take longer than it should. At worst, it will fail.

While failure is rare, wasted time and money—as well as unnecessary worry—are not. Better management and upfront planning can ensure against that rare failure, pare down budgets, and calm nerves.

Employing a gated approach during the planning phase assures that when it’s time to implement a new process, or reconfigure an old one, the project and its intricacies will be clearly defined. Stakeholders will be closely aligned and countless other design issues addressed, reducing the risk of project delays, downtime, or something more severe—like a defective product.

Applying a gated process/front-end loading (also known as FEL; FEE–front-end engineering; FEED– front-end engineering design; and PPP–preproject planning) affords a project team time to think through the elements, scenarios, and the process itself, before bringing that process to life. Each phase, stage, or gate (typically there are three of them) focuses on a particular project portion in a way that helps to define the scope. Each phase has its set of stakeholders, issues, and considerations to embrace and resolve. And each must be resolved before moving to the next stage.

Gated process

It is a simple idea really, breaking down the process and working with the right personnel, from the plant floor to the executive suite, to ensure overall project success. So why don’t businesses allow for more engineering as part of the bidding process? Some have the misconception that using a gated process or front-end loading for engineering costs more, adds time, and involves too many people.

For example, say your intent is to build a new processing facility. The request for purchase (RFP) issued provides little project definition—there’s virtually zero clarity about facility size, equipment needs, production/staffing schedules, or output goals—let alone the company’s business case. The prime and subcontractor bids follow as those questions are answered. In turn, you review and award the work knowing the scope is unclear and add to what’s been estimated to cover additional questions and unknowns. Before work even begins, thousands of additional dollars are tied up in the contingencies that may be involved.

By applying just a portion of those contingency dollars to the preplanning process, you shrink the estimate range. Rather than overestimating, you can generate accurate budget numbers that reflect a clear scope. The contingency could be as little as +/- 10%—freeing up capital dollars for other initiatives. This level of definition also holds those involved accountable because submitted estimates are based on specific criteria.

FEL done properly, through capital appropriation and project control budget (+/- 10%), can require between 40%-65% of the overall engineering budget. While a considerable sum, this figure ensures that an owner, general contractor, vendors, suppliers, and subcontractors have all of the tools necessary upfront for good planning, estimating, and project execution.

Taking this approach lowers a project’s overall cost—often by as much as the costs of the FEL process itself.

Project timelines are also determined once the project is defined through a gated process. In addition, potential risks are flagged and addressed during planning rather than in the implementation phase when delays are costly. Because working through the different phases involves all stakeholders, projects are planned with a more holistic perspective. For example, if a project specifies a type of equipment that line workers have had a problem with in the past, causing downtime, that can be captured through the gated process. Not having that information could lead to a change order or production issues.

Gateway to success

As previously mentioned, the FEL process typically contains three phases, or gateways, before project execution and start-up. Passing through each gateway requires completion, presentation, and approval of specific activities.

  • Gateway I: Conceptual Engineering / Financial Feasibility

The first gateway, call it FEL 1, might be described as a quick look to test project feasibility, to make an informed decisions about possible return on investment and whether to pursue the project. Depending on project size, this stage can typically take around three weeks. It involves analyzing three issues: project goals, the business case, and scope of work.

The goals must define how the project changes the business for the better. The business case, of course, identifies the project’s financial benefit. Laying out the scope of work enables a preliminary cost estimate, which will typically have limited accuracy—because of the need to make numerous assumptions at this stage.

  • Gateway II: Preliminary Engineering / Financial Justification

Completing FEL 1 puts the project past the first gateway to FEL 2, which formalizes what must be done to make the project a success. FEL II begins after the business case has been presented to senior management having capital approval authority and they have decided to proceed to the next phase.

Among other activities, this phase assigns a project manager, refines the engineering, assembles a project team, and identifies key stakeholders who should—but without FEL often don’t—play a project role. FEL 2 also moves the engineering ahead to a point where it becomes possible to validate—or invalidate—the business case and justify the capital commitment within a more narrow range. It features a significant list of deliverables, including an approved capital request for engineering work and specifications for equipment requiring long lead times.

The focus of FEL 2 is to lock down the project’s scope and eliminate risks identified in FEL 1. It refines the milestone schedule, establishes a time frame for approving capital requests, and develops an execution plan, along with preliminary plans for commissioning, qualification, and verification.

Finally, this phase refines the estimate to a more accurate range (+/- 25%). Again, depending upon the project scope, FEL II may take one month to three months.

  • Gateway III: Detailed Engineering / Financial Budget

FEL 3 completes the capital-request process. Supporting documentation is submitted to the senior management and approval committees. Managers refine the project’s scope, add details to plans, fill in details on the schedule, and finalize the project execution plan. The start-up plan is further developed in this phase. It includes establishing staffing requirements, developing training materials for operations and maintenance staff, and scheduling the commissioning, qualification, and verification processes.

FEL 3 typically takes one to three months to complete and ends with final capital approvals that enable the project to commence (+/- 10%).

FEL case study

A gated process shouldn’t be viewed as an additional layer of work that adds costs. A systematic approach to engineering means better results for the project, bottom line, and business.

As the third-ranked food-process design firm in the country and leading supplier of process controls solutions, SSOE Group understands the specific production concerns of food manufacturers. In a recent project for a food manufacturer, SSOE replaced an outdated ABB control system with a new Allen-Bradley ControLogix system. While the project seemed straightforward, SSOE and the manufacturer applied the FEL process to identify potential risks and create a schedule.

During FEL 1 and FEL 2, SSOE met with the manufacturer’s corporate project manager, plant manager, supervisors, and maintenance personnel. Through these planning sessions, the project team identified the best option, which was to leave the actual process portion of the ABB system alone and change all the controls to the new Allen-Bradley system. SSOE determined that it would take three weeks of downtime to replace and integrate the new controls. In addition, the team would need eight to 10 weeks for preparation and programming.

Upfront planning allowed manufacturing to identify a production window that would accommodate the downtime, and allowed the contractor to prepare and pull wires from the old system ahead of time. Had these timing requirements not been considered, the project would have been rushed, leaving room for error, or would have exceeded its schedule.

In addition, the gated process allowed SSOE to recognize factors impacting control system installation and start-up. Creating an accurate schedule and cost estimate was influenced by the number and availability of plant resources, time for training as well as training materials, a start-up curve for plant personnel, and time for testing and maintenance.

The several weeks spent in the preplanning process were critical to overall project success. Not only was the conversion completed on time, but it was approximately $30,000 under budget. The manufacturer was able to use the money saved for additional improvements.

Three steps

The three steps that compose the FEL engineering portion of the project ensure success in numerous ways. The FEL planning process helps integrators and their clients estimate projects more accurately, deal effectively with risk, and establish efficient plant operations. The process ensures that the human, financial, and physical tools are in place to get the job done right the first time.

Tim Michalski, PE, is a senior electrical engineer at SSOE Group, an international engineering, procurement, and construction management firm. 

Get more help online

Michalski is responsible for the management and leadership of electrical control and power distribution system projects for industrial manufacturing clients. With over 30 years of experience, Tim has a demonstrated understanding of using a gated process/front-end loading to help clients achieve their project goals. He can be reached in SSOE’s Toledo office at 419.255.3830 or by e-mail at