Comment on ISA88 Part 5 Draft definitions: Automation object, AO functional manager, device, others

Make2Pack ISA88 Part 5 conference call included discussion of definitions, perhaps particularly timely since the Pack Expo 2010 ( conference is so near. We’ve had a number of discussions as this draft has progressed about terminology, especially since that the terms people use from processing and packaging automation can differ.


Make2Pack ISA88 Part 5 conference call included discussion of definitions, perhaps particularly timely since the Pack Expo 2010 ( conference is so near. We’ve had a number of discussions as this draft has progressed about terminology, especially since that the terms people use from processing and packaging automation can differ.

Do these definitions work for you? (That’s the purpose of a standard, after all, to derive agreed upon language and framework that makes it easier to work with and integrate automation.)

Please comment, whether you agree or would revise: Would those people in your facility involved with automation and controls agree with them? Would you want to email them this link so they could comment, after you do? Look at the definitions below and post a comment (comments are reviewed weekly then made live) or email me directly using my contact info below. When commenting, it’s most helpful to provide a rewrite of how you think it should be, then explain why. A word about your background and what you do, would be helpful to provide context. Thanks!

3 Definitions

For the purposes of this part of this draft, the following definitions apply. Definitions and concepts expressed in the Part 1 standard apply, except where differences are explicitly stated in this part. 

3.1 Automation Object (AO)

 – The grouping of engineered control components that will carry out the requirements of a module. This must consist of a functional strategy component and may consist of a function manager and a resource manager. An automation object provides public methods to interact with the functional strategy.

3.2 Automation Object Command Processor

 – the functionality that will receive commands from a public source and evaluate them to determine what actions to take. Appropriate commands will be passed to the active functional strategy in whatever form the functional strategy requires. The command processor provides public status results of any requested activity.

3.3 Automation Object Function Manager

 – if the AO functional strategy supports command and control capabilities in a public method the AO function manager provides the public interface and methods to process commands and manage control that is applied to the functional strategy.

3.4 Automation Object Functional Strategy

 – The part of an AO that contains the module specific functionally engineered using vendor supplied tools and components native to a control environment to carry out the control required by an operating scheme. This AO component must as a minimum provide predefined information in a public way.

3.5 Automation Object Resource Manager

 – if the AO has multiple functional strategies and/or supports multiple users/owners the AO resource manager will provide a public method to manage the other components of the AO to see the required functional strategy is active and the commands and control are accepted only from approved sources.

3.6 Device

 – A Device is a piece of physical equipment and has no control associated with it. Part 1 refers to this as a Control Module. When control is associated with a device it becomes a Control Module Entity.

Example – the valve body, actuator and limit switch are devices that when paired with the functional strategy of a control module form an on/off block valve.

Example – (pending, from Pierre)

3.7 Functional Strategy (FS)

 – The actions required to carry out the control described by an operating scheme for any equipment or control module.

3.8 Mode of Action

 – a functional strategy may support the part 1 defined modes of control, automatic, semi-automatic, manual. Other modes may also be supported, for example simulation. The mode of action is used to define the behavior of the functional strategy.

3.9 Mode of Control

 – where an AO has more than one functional strategy and/or more than one source of command and control the mode of control will define the behavior of the entire automation object as to who or what can issue commands and which functional strategy will react to those commands.

David A. Chappell, Complete Manufacturing Automation associates - LLC

Also read:

Prior postings from the blog: Standard Profits: Make2Pack and ISA88

OMAC standards yield operational savings

Make2Pack’s S88.05: Continuous control to packaging

Not seeing the comments box? Click here to comment on ISA88 Part 5 definitions, and scroll to the bottom of the page.

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Robotic integration and cloud connections; SCADA and cybersecurity; Motor efficiency standards; Open- and closed-loop control; Augmented reality
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me