Converting DC Voltages

Solid-state devices that change dc voltages without transformers are getting to be more common.

05/03/2012


Dear Control Engineering: At the ABB Automation and Power World, there was a lot of discussion of dc power distribution. How can that be practical if transformers can’t be used to change voltages?

 

If you’re old enough, you may remember the days when having a power supply capable of delivering dc power at various voltages meant having a transformer to convert mains ac to the desired voltage and then rectifying it. Multiple voltages meant multiple taps and maybe a rheostat. Something as simple as a radio normally depended on a (heavy and expensive) transformer to boost voltage for tubes, or reduce it for transistors.

 

If you’re really old, you may remember car radios that had tubes. (I do.) Since 12 Vdc was not high enough voltage to make a vacuum tube function, a mechanical device called a vibrator created crude ac or chopped dc mechanically. This could be fed into a transformer and stepped up to a useful tube voltage and then converted back into dc.

 

Changing ac to dc, or dc from one voltage to another simply wasn’t practical without some sort of rotary converter. (If you ever had to work on a three-bearing MG set, you can be happy these ultimately disappeared.) This was one of the reasons that Edison lost the battle with Tesla. If Edison wanted 100 Vdc for residential us, he had to generate it at that voltage which proved to be impractical for many reasons. This is a major reason why we have ac distribution today.

 

In my travels I once saw an interesting version of a mechanical VFD. A natural gas engine was coupled to a dc generator. Power from the generator was fed to a motor/alternator set. Since the dc could be varied, it allowed the alternator to rotate at any speed and therefore generate ac at any frequency. This was used in a motor repair shop, so it was only used for testing purposes. I can’t imagine what the overall efficiency was, but I doubt it was very high. But I digress.

 

Anyhow, the current technology that has become ubiquitous is switched-mode power supplies. While you can go into greater depth at your leisure, the basic idea is that semiconductors can turn on and off very quickly. This action cleverly combined with other components, including inductors, capacitors, and transformers, can convert just about anything to anything, and it is highly scalable.

 

OK, where'd they put the transformer?

 

The charger I have for my iPhone is a prime example. Barely more than 1 cubic inch, this device can convert 120 Vac mains power to 5 Vdc used by USB circuits. The first time I saw one of those, I didn’t think it was possible. “Where the heck did they put the transformer?” I asked. The answer is simple: there isn’t one. The power converter for your laptop can probably work at any voltage around the world if you have the right plug. No problem. Switched-mode power supplies can be very efficient, reliable, small, and relatively inexpensive. They are common now and will be even more so.

 

For industrial use, dc distribution can be very practical. If your plant has a dc bus, anything that uses a motor can run off a VFD powered from the bus. Other devices can use converters or switched-mode power supplies as needed. There are all sorts of possibilities.

 

Peter Welander, pwelander@cfemedia.com



The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Maximize ROI with integrated control system approach; Microcontrollers vs. PLCs; Power quality; Accelerate and rewire IIoT; Traits for excellent engineers
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me