Intrinsic safety protects your plant against explosions

07/01/1997


Explosions can be prevented by limiting the amount of electrical energy available in hazardous areas or by containing the situation using bulky, heavy devices called 'explosion-proof enclosures.' Limiting excess electrical parameters such as voltage and amperage (current) requires the use of energy-limiting devices known as 'intrinsically safe (IS) barriers.'

Explosion-proof enclosures prevent or control explosive situations with brute force. They are heavy containers designed to hold an explosion inside. Electrical devices within explosion-proof enclosures can operate at normal power levels. Even under fault conditions, an explosion or fire may not occur because there simply isn't enough air within the sealed container to support combustion. If an explosion happens, the housings are strong enough to contain it.

Intrinsically safe barriers are more elegant. They limit the levels of power available in the protected area. If a spark or excess electrical heat cannot occur, neither can a fire or explosion. IS barriers eliminate the bulky enclosures, the use of conduit and expensive enclosure/conduit seals, and the associated installation costs.

Implementing intrinsic safety
While most users in Europe have used IS for many years, IS wasn't adopted as a part of the U.S. National Electrical Code until 1990 (Section 504). Implementing IS requires more intimate knowledge, and careful selection, of the devices involved than specifying explosion-proof enclosures. The need to perform many calculations to implement IS has turned off many engineers.

Three components comprise an intrinsically safe circuit: the target device, the intrinsically safe barrier, and the wiring.

Devices within the protected area are either simple (RTDs, LEDs, contacts, thermocouples, resistors, etc.) or complex (transmitters, solenoids, relays, transducers, etc.). Complex devices may store excess energy, and thus should be certified 'intrinsically safe' by a third party, such as Underwriters Laboratories (Northbrook, Ill.), Canadian Standards Assn. (Rexdale, Ontario, Canada), FactoryMutual (Norwood, Mass.), etc.

The simplest form of intrinsic safety barrier employs a resistor to limit current, at least two Zener diodes to limit voltage, and a fuse. The resistor limits the current to a specific value known as the short-circuit current. The Zener diodes limit the voltage to a value referred to as the open circuit voltage. The fuse will blow when the diode conducts. This interrupts the circuit, preventing the diode from burning, which could allow excess voltage to reach the hazardous area. There are always at least two Zener diodes in parallel in each intrinsically safe barrier. If one diode fails, the other acts as a backup providing safe operation and complete protection.

Selection of the proper intrinsic safety barrier requires calculating the open-circuit voltage and the short-circuit current. For complex devices, its necessary to also calculate the allowed capacitance value and the allowed inductance value. Results are then compared to 'ignition curves.'

Because different materials can be ignited by different levels of energy, Ignition Curves have been calculated for a wide variety of materials and can be obtained as Standards 3610 and 3611 from Factory Mutual, 1151 Boston-Providence Tpke., Norwood, MA 02062; Tel: 617/762-4300, Fax: 617/762-9375, or www.factorymutual.com.

The weak link
Intrinsic safety can be compromised at some point in time after the initial commissioning. This usually happens when an unrelated failure prompts improper maintenance or repair of wiring. Sometimes, to get things back up and running after a shutdown, temporary shortcuts are used. Left in place, these shortcuts can render intrinsic safety designs useless. Unfortunately, the effect of these shortcuts sometimes goes unrecognized--until its too late.

It's essential that good wiring documentation be created at installation, and that all future changes be noted as implemented to ensure intrinsic safety protection remains intact after repair.

Hazardous locations
DIVISION 1
(Continuous hazard and intermittent hazard)
Class I
Group ATypical example: Acetylene
Group BTypical example: Hydrogen
Group CTypical example: Ethylene
Group DTypical example: Propane
Class II
Group ETypical example: Metal dust
Group FTypical example: Coal dust
Group GTypical example: Grain dust
Class III
DIVISION 2





The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Maximize ROI with integrated control system approach; Microcontrollers vs. PLCs; Power quality; Accelerate and rewire IIoT; Traits for excellent engineers
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Maximize ROI with integrated control system approach; Microcontrollers vs. PLCs; Power quality; Accelerate and rewire IIoT; Traits for excellent engineers
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Maximize ROI with integrated control system approach; Microcontrollers vs. PLCs; Power quality; Accelerate and rewire IIoT; Traits for excellent engineers
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me