Understanding optimizers

12/03/2013


Data validation and reconciliation

The old computer programming axiom of “garbage in, garbage out” certainly applies to optimization, especially in the case of online optimization. As mentioned earlier, in those cases where online closed-loop optimization is applied, these solutions don’t generally address process dynamics in any comprehensive manner. Consequently they are executed only when the process has reached steady state, requiring that the tools have sufficient facilities to detect that the process has reached steady state from the last set of moves requested by the optimizer. These steady state detection tools are used in conjunction with data reconciliation tools to spot, correct, and remove or even replace process values prior to the optimizer initiating its calculation sequence to arrive at the next solution. 

Constraints

Constraints or limits are present in every context of optimization, whether it is MPC optimization or online/offline optimization. The process presents many constraints which must be respected and are therefore integrated programmatically into the software. Constraints might be with respect to product qualities or safety or equipment limits. In any case they must be respected and not violated. Sometimes, the optimizer cannot find a feasible solution with the existing constraints and a constraint must be relaxed in order to find a feasible solution. In these cases the constraints selected to be relaxed or given up are determined ahead of time and ranked as to which constraint is least important.

Benefits, costs, and maintenance

Six to nine months is typical ROI for optimization applications, but there is wide variation across industries. Some of the greatest benefits have been achieved when they are implemented as part of an MPC program and when regulatory and advanced regulatory control layers are well maintained and operating at peak performance prior to commissioning.

Although optimization projects may compete for resources, it is worth noting that the optimization itself does not change the process or the existing automation hardware, except for the addition of another server class machine connected to the process or business network. 

Maintenance must also be factored into any discussion of ROI on optimizers. Some assume that once commissioned, optimizers require no ongoing maintenance. However, operational constraints, models, and objectives change over time and the optimizer must be changed accordingly. Ongoing software and application support can average 10% of the original project cost.

Future requirements

Despite their benefits, developing rigorous first principle models can be time-consuming. Combining empirical and first principle models is an emerging trend, which promises to reduce development time and ease future model maintenance. Integration of historians, feed property databases, and various planning tools is another trend, which can reduce staff time needed to update information manually while at the same time reducing errors. Lastly, the new generation of users coming into the workplace demands a level of ease of use not found in the previous generation of tools. Drag and drop, copy and paste, and touchscreen enabled are all trends that will simplify the use and adoption of software tools. The inclusion of features that are consistent with the mainstream desktop- and iPad-enabled generation will be ongoing. 

Also, the technical capabilities to conceive, develop, commission, and maintain an optimization system are always in short supply. Getting staff with the right skills is a prerequisite to a successful project in addition to identifying and enlisting a site champion. The right skills might be within your company or within the supplier organization, but not in your geographic location, so we are seeing an increasing trend where multiple locations and time zones are accommodated by the optimization tool set, allowing multiple persons in differing locations to work collaboratively in real time. Two or more users should be able to view the same workspace at the same time with both making changes with the underlying database managed in near real time. The successful tools of the future will support the transition of design models developed for steady state design to be seamlessly translated into the online optimization for both steady state and dynamic applications, giving much greater leverage and reuse than has been possible with previous generations of tools.

Tom Kinney is vice president, optimization, for Invensys.

Key concepts:

  • In most process manufacturing applications, the number of process variables requires sophisticated analysis to determine optimum operating conditions.
  • Optimizers operate hand-in-hand with advanced process techniques to drive profitability.
  • Accurate process models are necessary to ensure that all relevant operating constraints and safety measures are included in the calculations.

ONLINE

http://iom.invensys.com

See related stories about advanced process control below.

Subscribe to Process & Advanced Control eNewsletter at www.controleng.com/newsletters


<< First < Previous Page 1 Page 2 Next > Last >>

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Maximize ROI with integrated control system approach; Microcontrollers vs. PLCs; Power quality; Accelerate and rewire IIoT; Traits for excellent engineers
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me