Controllers balance performance with closed-loop stability

If high-speed response is not required, any continuous process can be controlled easily enough. A feedback controller need only measure the process variable, determine if it has deviated too far from the setpoint, apply the necessary corrective effort, wait to see if the error goes away, and repeat as necessary.


If high-speed response is not required, any continuous process can be controlled easily enough. A feedback controller need only measure the process variable, determine if it has deviated too far from the setpoint, apply the necessary corrective effort, wait to see if the error goes away, and repeat as necessary. This closed-loop control procedure will eventually have the desired effect provided the controller is sufficiently patient.

Unfortunately, patience is not generally considered a virtue in process control. A typical controller will apply a whole series of corrective efforts well before its initial efforts have finished affecting the process. Waiting for the process to settle out every time the controller makes a move generally leaves the process out of spec for so long that the controller becomes virtually useless.

A child playing on a swingset uses closed-loop
instability to keep the swing going.

Not so fast

On the other hand, a controller that tries to eliminate errors too quickly can actually do more harm than good. It may end up over-correcting to the point that the process variable overshoots the setpoint, causing an error in the opposite direction. If this subsequent error is larger than the original, the controller will continue to over-correct until it starts oscillating from 100% effort to 0% and back again.

This condition is commonly called closed-loop instability or simply hunting . An aggressive controller that drives the closed-loop system into sustained oscillations is even worse than its overly patient counterpart because process oscillations can go on forever. The process variable will always be too high or too low. Worse still, the oscillations can sometimes grow in magnitude until pipes start bursting and tanks start overflowing.

Stabilizing techniques

The Ziegler-Nichols closed-loop method is arguably the most straightforward approach for designing stable control loops. It applies to PID controllers, which can be made more or less aggressive by adjusting their proportional (P), integral (I), and derivative (D) gains. The higher the gains, the harder the controller works to eliminate errors.

Ziegler and Nichols found that if they gradually turned up the proportional gain on a P-only controller it would eventually start over-correcting and force the process into sustained oscillations. By reducing the gain by 50% at that point, the loop would become stable again. Simple enough!

Less obvious is how to add integral and derivative action to make the controller even more responsive without risking closed-loop instability. Ziegler and Nichols determined through trial and error that increasing the integral and derivative gains in a prescribed manner would actually allow the proportional gain to be increased to as much as 75% of the value that caused instability. Their famous 'tuning rules' allowed control engineers for the first time to design two-term (PI) and three-term (PID) controllers that would keep the closed-loop system stable, yet fast enough to eliminate errors in a timely manner.

A child on a swingset, for example, uses closed-loop instability to keep the swing going. By applying a control action while the swing is still in motion (i.e., by 'pumping'), the child can force the swing back and forth past its resting position. Conversely, a process controller would try to keep the closed-loop system stable by forcing the magnitude of Q to grow ever smaller.

Author Information

Vance J. VanDoren Ph.D., P.E., consulting editor, is president of VanDoren Industries, West Lafayette, Ind. Email him at .

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.